
1

CS148 Overview
Display Devices

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
June 21, 2005

Outline for today

What is computer graphics?
Intro to CS148
Some terminology
Display devices
Graphics/GUI programming

Outline for today

What is computer graphics?
Intro to CS148
Some terminology
Display devices
Graphics/GUI programming

2

Computer graphics is…

Computer-generated artwork
Interactive 2D graphics
Interactive 3D graphics
Photorealistic 3D graphics
Photorealistic 3D video
Digital photography

One definition to rule them all…

Computer graphics is the science of
coloring pixels on a display to trick
the viewer into seeing an object or
a scene.

3

What type of computer graphics will we
address this quarter?

CS148 is (mostly) about interactive 3D
graphics

A little bit on 2D graphics
A little bit on non-interactive 3D graphics
No image processing or digital photography

CS448a: Computational photography
CS448b: Visualization
CS348a: Geometric modeling
CS348b: Rendering
CS223b: Computer vision

Outline for today

What is computer graphics?
Intro to CS148
Some terminology
Display devices
Graphics/GUI programming

Introduces important mathematical
concepts in graphics
Primarily focused on giving you a working
knowledge of OpenGL

What you learn will generalize to other 3D
environments, e.g. DirectX, Matlab, Amira, Maya

Not as theoretically in-depth as CS248; if
you plan to continue in graphics at
Stanford, you should look at CS248

CS148: Intro to Graphics Administrative Blah Blah 1: Grading

50% Programming Projects
20% Midterm
30% Final
You need passing work on both
exams and all projects to pass

This part of the lecture is boring so I’m including thoroughly
gratuitous pictures of cute puppies to keep you awake:

Administrative Blah Blah 2: Late Policy

You have three “late days” for the quarter
25% lost per day after that
3 hours late is 1 late day
For group projects, all members lose late
days for late submissions
Make your life easier and submit on time

Administrative Blah Blah 3: Textbook

OpenGL Programming Guide v1.4,
Fourth Edition (“The Red Book”) is
the official text
Second edition is online and linked
from the website (85% similar)
Handouts posted the night before
class – print them out if you want
them in class

4

Administrative Blah Blah 4: Math

There is math in graphics
This is not a math course
Look over the “essential math”
handout
Get in touch with us if you
have questions

Administrative Blah Blah 5: Programming

OpenGL and GLUT (GL Utility Toolkit)
All grading will be done on the myth,
firebird, and raptor Linux machines in
Sweet Hall
You can develop at home if you like, and
we’ll provide Windows project files, but be
sure to test on the Linux machines
Subtle subtext: there is substantial
programming in CS148

Wait! That’s not a puppy!

Administrative Blah Blah 6:
Getting in Touch

http://cs148.stanford.edu
cs148staff@cs.stanford.edu

Dan’s office hours:
Tuesday, 1pm-3pm, Gates 116
Or email dmorris@cs.stanford.edu

Sean’s office hours:
TBA

Summary: How to Succeed in CS148

Come to class
Start the projects early
The staff will not debug your
programs!
Be creative: we want to give you
extra credit

Suggest optional project components
or whole projects from your own work

Submit questions for exams

Outline for today

What is computer graphics?
Intro to CS148
Some terminology
Display devices
Graphics/GUI programming

Terminology:
PRIMITIVES are made of PIXELS

Pixels are the dots that make your
display, you have on the order of a
million of them
Primitives are 2D shapes… generally
lines, triangles, and quads (4-sided
polygons)

5

Terminology:
OBJECTS are made of PRIMITIVES

Even 3D objects are made of 2D
primitives
Objects can be tens to billions of
primitives
More primitives smoother objects

Fun With Primitives: Make an Octagon From…

Triangles

Quads

One quad + triangles (why?)

Terminology:
SCENES are made of OBJECTS

Tens to thousands of objects per scene
Millions of primitives in many scenes
Speed is huge in graphics

Outline for today

What is computer graphics?
Intro to CS148
Some terminology
Display devices
Graphics/GUI programming

An ideal graphics programming interface

Dear Monitor,

Please draw a green spaceship in which a
purple alien is shooting at a blue robot.

Sincerely,
Dan

What can your monitor do?

You can’t tell your monitor “draw
some spaceships”
You can’t even tell your monitor
“draw some triangles”
Your monitor only knows how to
turn dots on and off.

6

Raster-Scan Displays: CRT’s

Incoming volts turn on
electron gun
Magnetic field bends
beam toward screen
Electrons hit tiny
phosphor elements to
turn them on
You see pixels
Beam sweeps over and
over at about 60Hz

Why so fast?

Raster-Scan Displays: LCD’s

Grid of wires puts
volts on crystals
Crystals twist to block
light or let it pass
Big white light shines
behind the whole grid
A red, green, or blue
filter sits in front of
each crystal
Still scans from side
to side and top to
bottom

Raster-Scan Displays: Summary

All a raster-scan display can do is
scan through every pixel
sequentially.
It needs instructions about what to
do for every pixel.

Doing it by hand

for(int i=0; i<height; i++) {
for(int j=0; j<width; j++) {
put out the volts for the current pixel;
wait until it’s time for the next pixel;

}
}

This would not be very much fun…

Disappointment?

Dear Monitor,

Communicating with you seems terribly tedious.
I’m dropping graphics and taking compilers
instead.

Sincerely,
Dan

PS Don’t call me either.

Solution: the framebuffer

Graphics card takes care of talking
to the monitor
You just need to fill up an array
telling the graphics card which
colors should go where

7

Framebuffer data

11 (brightest)11

2/3 (brighter)10

1/3 (dim)01

0 (none of this color)00

Relative intensityBit values

1bpp black-and-
white display

6bpp color display

What color is 000101 in a 6bpp BGR framebuffer?

Real-world framebuffers

Typically 24bpp or 16bpp
Typically 1280x1024
How much memory does this take
up?

Has this made our lives easier?

Filling the framebuffer with pixels
manually isn’t practical
Even simple images have thousands
of pixels
Try drawing this baby pixel-by-pixel…

Primitives save the day

void circle(int cx, int cy, double radius, bool
filled);

void rectangle(int cornerx, int cornery, double
width, double height, double angle, bool
filled);

Now drawing the baby doesn’t seem
so bad…

How does all this fit into CS148?

Thursday’s class and Project 1:
Turning primitives into pixels

The rest of the course:
Using primitives – supplied by
OpenGL – to make pretty pictures

Outline for today

What is computer graphics?
Intro to CS148
Some terminology
Display devices
Graphics/GUI programming

8

What’s under the hood?

Every video card speaks a slightly different
language
Different video cards know about different
primitives
Different video cards live in different places
in hardware (PCI, AGP, USB, etc.)

void circle(int cx, int cy, double radius, bool
filled);

Device drivers

A device driver is a library that has
low-level routines for talking
directly to the hardware
Generally released by the
manufacturer
Might contain a drawCircle() routine
that does all the hard parts
But something’s still missing…

Standard Graphics API’s

All device manufacturers write their
drivers with a common set of
function names, so lots of programs
can use them
Multiple standards exist:

OpenGL
Direct3D
GDI, X, PlayStation, etc.

Putting it all together:
device-independent programming

Write program using OpenGL
Compile program against empty
library or OS shell library
At runtime, the OS links your
program to the device driver’s
version of OpenGL

Putting it all together: Linux
Your favorite game
(speaks OpenGL)

||
OpenGL library

(finds driver for you)
||

XFree86 DRI Module (aka driver)
(speaks video card’s language)

||
AGP Kernel Module

(formats data for the AGP bus)
||

Linux kernel
(writes data to the AGP bus)

||
Snazzy Video Card

(speaks monitor’s language)

Putting it all together: Windows

9

Finally, happiness…

Dear Monitor,

I’m leaving you for OpenGL. She speaks
my language, you know, we can really
communicate.

Sincerely,
Dan

PS I’m just a man.

GUI’s create the same problem

3D graphics would be quite dull without
interactivity
Want to get mouse and keyboard info
Want slick GUI’s
OpenGL doesn’t help us here…

Solution: GLUT

GLUT: GL Utility Toolkit
Standard set of function names to
get simple UI features
Plays nice with GL
Implemented (and free) for many
platforms

Sample GLUT program
void main(int argc, char** argv) {

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(640, 480);
glutInitWindowPosition(100, 100);
glutCreateWindow(“This is a sample GLUT program”);
glutDisplayFunc(myDisplay);
glutMouseFunc(myMouse);
glutKeyboardFunc(myKey);
glutReshapeFunc(myReshape);
glutMainLoop(); /* Doesn’t return… */

}

// Keyboard function – called when a key is pressed
koid myKey(unsigned char key, int x, int y) { }

// Mouse function – called when a mouse button is pressed
void myMouse(int button, int state, int x, int y) { }

// Display function – called to redraw window
void myDisplay(void) { }

For next time

Find us if you have questions
Play with project 1
Look over the essential math
handout
Next time: scan conversion

