
1

Scan Conversion

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
June 23, 2005

Warning: Algebra Ahead

This will be more pleasant if you
follow along

Following along will make your first
homework easier

Tips for following along:
Participate
Stop me if I go too fast

Outline for today

What is scan conversion?
Scan-converting lines
SIGGRAPH video break
Scan-converting circles
Floodfilling
Antialiasing
Project 1

Outline for today

What is scan conversion?
Scan-converting lines
SIGGRAPH video break
Scan-converting circles
Floodfilling
Antialiasing
Project 1

What is scan conversion?

CG objects divided into 2D primitives
To put 2D primitives on the monitor, we
need to turn on the right pixels
Scan conversion is the process of turning
primitives into pixels

pixels on
display

shape you
want to draw

2D
primitives

pixels in
framebuffer

where? where? where?

Why study scan conversion?

Hardware does this for me, why should I care?
Need to understand the whole graphics
pipeline for effective GL coding/debugging
Scan conversion is fundamental to many
image-processing algorithms
Math demonstrates important optimization
concepts

2

Outline for today

What is scan conversion?
Scan-converting lines
SIGGRAPH video break
Scan-converting circles
Floodfilling
Antialiasing
Project 1

Scan converting lines

All we have to work with is:
setPixel(int x, int y, int color);

Implement the routine:
void draw_me_a_pretty_line(int x1, int y1,

int x2, int y2, int color) ;

Scan converting lines: take one
void scLine(int x1, int y1, int x2, int y2,

int color) {

// compute the y=mx+b equation for the line
double dy, dx, y, m, b;
int x;
dx = x2 - x1;
dy = y2 - y1;
m = dy / dx;
b = y1 – m*x1;

// loop over each x value
for (x = x1; x <= x2; x++) {
// compute the corresponding y value
y = m*x+b;
setPixel(x, round(y), color);

}
}

Draw a line from (1,1) to (5,6)

dx = 4; dy = 5;
m = 1.25; b = -0.25;
for (int x = 1; x<=5; x++) {
double y = mx+b;
setPixel(x, round(y), color);

}

What’s wrong with this approach?

(1,1)
(2,2)
(3,4)
(4,5)
(5,6)

A quick fix
Draw a line from (1,1) to (5,6)

dx = 4; dy = 5;
m = 1.25; b = -0.25;
for (int y = 1; y<=6; y++) {
double x = (y-b)/m;
setPixel(round(x), y, color);

}

(1,1)
(2,2)
(3,3)
(3,4)
(4,5)
(5,6)

What’s still wrong with this approach?

Performance: floating-point multiplies are a
graphics programmer’s worst enemy
Doesn’t generalize well to other shapes
Also has subtle roundoff problems if you
happen to walk exactly between two rows or
columns

3

The real deal: Bresenham’s Algorithm

Uses only integer calculations
Adapts nicely to other primitives

(unnecessary picture of Jack Bresenham to
make you feel more emotionally attached to
his algorithm)

Bresenham’s Algorithm: Setup
Assume we’re drawing a line with
positive slope less than 1
Assume we’ve decided to draw the kth

pixel on our line at (xk,yk)
We’re going to step horizontally

xk xk+1 xk+2 xk+4xk+3

yk

The “real”

y = mx+b

Bresenham’s Algorithm: Iterating
The “real” y value at xk+1 is m(xk+1)+b
We know that 0 < slope < 1, so our only
choices are yk and yk+1
Compute the distance from the “real
line” to each of our two choices

xk xk+1 xk+2 xk+4xk+3

yk
d1
d2yk+1

Bresenham’s Algorithm: Iterating

What does the boolean value (d1-d2>0)
tell me?
d1–d2 > 0 --> d1 > d2 -->
yk+1 is closer than yk

xk xk+1 xk+2 xk+4xk+3

yk
d1
d2yk+1

Bresenham’s Algorithm: Iterating
So the value d1-d2 tells me whether to
pick yk or yk+1

Then I can just move on to the next
pixel, starting the algorithm again with
(xk+1,yk) or (xk+1,yk+1)

xk xk+1 xk+2 xk+4xk+3

yk
d1
d2yk+1

What’s wrong with this approach?

d1 = y - yk = m(xk+1) + b - yk

d2 = (yk+1) - y = (yk+1) - m(xk+1) – b

Floating-point multiplication still kills us…

4

Bresenham’s Algorithm: Optimizing

Want to know whether d1 – d2 > 0

d1 = y - yk = m(xk+1) + b - yk

d2 = (yk+1) - y = (yk+1) - m(xk+1) - b
d1 - d2 = 2m(xk+1) - 2yk + 2b – 1
m = dy/dx
pk = dx(d1-d2) [pk is our “decision variable”]
pk = dx(2m(xk+1) - 2yk + 2b - 1)
pk = 2dy * xk - 2dx * yk + 2dy + dx(2b-1)
pk = 2dy * xk - 2dx * yk + c

if pk < 0 set the lower pixel
else set the upper pixel.

Bresenham’s Algorithm: One More Step

pk = 2dy * xk - 2dx * yk + c

How many multiplies at each pixel?
Can we do better?

pk+1 = 2dy * xk+1 – 2dx * yk+1 + c
pk+1 – pk = 2dy(xk+1 – xk) – 2dx(yk+1-yk)
pk+1 – pk = 2dy – 2dx(yk+1-yk)
pk+1 = pk + 2dy – 2dx(yk+1-yk)
pk+1 = pk + 2dy (if pk < 0) or

pk + 2dy – 2dx (if pk > 0)

If we plug (x0,y0) into the pk equation, we get
our starting value:

p0 = 2dy - dx

Bresenham’s Algorithm: Summary
Bresenham’s Line-Drawing Algorithm for 0 <= m < 1

1. Input two endpoints, store left endpoint as (x0 , y0).
2. Turn on initial point: setPixel(x0,y0,color);
3. Calculate constants dx, dy, 2dy and 2dy - 2dx
4. Calculate starting value of decision parameter:

p0 = 2dy - dx

for(k=0; k<=x1-x0; k++)
if (pk < 0)

setPixel(xk + 1, yk, color)
pk+1 = pk + 2dy
yk+1 = yk

else
setPixel(xk + 1, yk + 1, color)
pk+1 = pk + 2dy - 2dx
yk+1 = yk + 1

Bresenham’s Algorithm: Other Cases

Negative slope: 0 > m > -1
Change one sign on the previous slide

x0 > x1
Swap ______ and ______

|dy| > |dx|
Iterate _____ _____ instead of _____

This is the only
case we handled

SIGGRAPH video break
Five-minute break to introduce you to what’s
going on in research graphics in 2005

Slight bias toward Stanford projects

This week:

High Performance Imaging Using Large Camera
Arrays, Wilburn et al, SIGGRAPH 2005

Outline for today

What is scan conversion?
Scan-converting lines
SIGGRAPH video break
Scan-converting circles
Floodfilling
Antialiasing
Project 1

5

Scan-converting Circles

All we have to work with is:
setPixel(int x, int y, int color);

Implement the routine:
void draw_me_a_circle(int xc, int yc,

int radius, int color) ;

(xc,yc)

r

Scan-converting circles, take one

Pythagorean theorem tells us:
(x-xc)2 + (y-yc)2 = r2

We can solve this for y:
y = yc ± sqrt(r2 – (xc – x)2)

for(int x = xc – r; x <= xc + r;
x++) {
int dy = sqrt(r2 – (xc – x)2);
setPixel(x,y+dy,color);
setPixel(x,y–dy,color);

}

Taking advantage of circular symmetry

If point (x,y) is on the circle, what
other points must be on the circle?

Scan-converting circles, take two

Hint: pretend center is at the origin,
except when you call setPixel(…)
(today’s notation assumes this)

for(int x = ___; x <= ___ ; x++)
int y = sqrt(r2 – x2);
setPixel(__,__,color);
setPixel(__,__,color);
setPixel(__,__,color);
setPixel(__,__,color);
…

What’s still wrong with this approach?

Bresenham’s Algorithm for Circles

Start in the octant just above the x-
axis, walk ccwise around the circle

Red pixel is turned on, which pixels
could be turned on next?

1 2 3

5

876

4

Which point is closer?

Just like we did for lines, let’s compute the
distance from each point to the “real” circle
Call the red point (xk,yk)
We want to find xk+1 and yk+1

What’s yk+1?

d1 = xtrue
2 - (xk-1)2 = r2 - (yk + 1)2 - (xk – 1)2

d2 = xk
2 - xtrue

2 = xk
2 - r2 + (yk + 1)2

d2

d1

6

Which point is closer?

Define a decision parameter: pk = d2 – d1
If pk > 0, point 1 (the left point) is closer
Terminology: pk helps us choose xk+1

pk = d2–d1 = 2(yk+1)2 +xk
2 + (xk-1)2 – 2r2

This is still a little nasty… what trick did we
do next for lines?

Moving right along

What’s pk+1?

pk+1 = 2(yk+1+1)2 + (xk+1)2 + (xk+1-1)2 – 2r2

= 2((yk+1)+1)2 + (xk+1)2 + (xk+1-1)2 – 2r2

How can pk help us find pk+1?
Let’s compute pk+1 – pk

Skipping all the algebra, we get:

pk+1 = pk + 4yk + 6 + 2(xk+1
2 - xk

2) - 2(xk+1-xk)

What are the possible values for the
terms in parentheses?

Moving right along

pk+1 = pk + 4yk + 6 + 2(xk+1
2 - xk

2) - 2(xk+1-xk)

if we chose the pixel on the right (pk < 0)
xk+1 == xk

pk+1 = pk + 4yk + 6

if we chose the pixel on the left (pk > 0)
xk+1 == xk – 1
pk+1 = pk + 4(yk – xk) + 10

Bresenham’s algorithm for circles
(just the first octant)

drawCircle(int xc, int yc, int r, int color)
x = __;
y = __;
p = __;
for (int y = __; y < __; y++)

setPixel(x+xc,y+yc,color)
if (p < 0)

do what?
else

do what?

What about the other seven quadrants? Relax, that’s all the algebra for today…

7

Outline for today

What is scan conversion?
Scan-converting lines
SIGGRAPH video break
Scan-converting circles
Floodfilling
Antialiasing
Project 1

Floodfilling

Change the color of all the
pixels that are the same color
as some “seed” pixel
Like the “paint bucket” tool

Terminology

2 pixels are 4-connected if they
are adjacent horizontally or
vertically
2 pixels are 8-connected if they
are adjacent horizontally,
vertically, or diagonally

1 2 3

5

876

4

Pixel 2 is 4-connected and
8-connected to the red
pixel

Pixel 1 is 8-connected to
the red pixel

Floodfill, take one
The color the user clicked on is inside_color
The color the user is “dumping” is new_color

void FloodFill(int x, int y,
int inside_color, int new_color) {

if (GetPixel(x,y) == inside_color) {

SetPixel(x, y, new_color);
FloodFill(x-1, y, inside_color, new_color);
FloodFill(x+1, y, inside_color, new_color);
FloodFill(x, y+1, inside_color, new_color);
FloodFill(x, y-1, inside_color, new_color);

}
}

What’s wrong with this approach?

Floodfill, take two: fill in “runs”

b

e

s a

d

c

fgh

j

i

Turn on the seed

Fill as far left and right as you can from the seed

Scan the row above and below to look for runs

Queue up the rightmost pixel of each new run

This is
the seed

Outline for today

What is scan conversion?
Scan-converting lines
SIGGRAPH video break
Scan-converting circles
Floodfilling
Antialiasing
Project 1

8

The Jaggies
Wouldn’t “the jaggies”
be a good name for a
sitcom about a family of
monsters?

Discrete pixels can’t capture primitives
perfectly

A scan-converted primitive:

Looks jagged if pixels are relatively large:

Solution 1: Buy Better Hardware

Aliasing is less visible if the
pixels get smaller

Downside: more resolution
costs more $$

Downside: more pixels take
more time to scan-convert

Solution 2: Antialiasing
Human eye is good at seeing sharp edges
Blurring primitive edges reduces the
visibility of the jaggies
Use all our extra intensity resolution to
compensate for limited spatial resolution

Antialiasing: Prefiltering

Shade each pixel based on how much of
it overlaps a primitive

For lines: assume one pixel width

Antialiasing: Supersampling

Scan-convert to a virtual display with lots
of pixels
Real pixels are averages of nearby
“supersamples”

Image: Marc Levoy, 2000

Antialiasing:
What does this mean to me?

OpenGL supports antialiasing,
but it’s not free

Can be slow
Can require complicated sorting of
your primitives

One major task of any graphics
programmer is to evaluate
beauty vs. performance

9

Project 1 Overview: MiniPaint
You’re the rasterizer
You’re given setPixel(…) and
getPixel(…) routines
You need to implement:

Bresenham for lines
Bresenham for circles
Filled axis-aligned rectangles
Floodfill
“Airbrush”

Also an intro to GLUT

Next time
Intro to OpenGL
Windows and clipping

