
1

Intro to OpenGL
Animation
Windows and Clipping

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
June 28, 2005

GL Examples

Today will be a learn-by-doing sort
of lecture… examples are more
important than slides

Example programs will be available
on the web

Today’s class will be optimally fun if
you encourage me to prod and poke
at the code...

Outline for today

OpenGL conventions
OpenGL program structure
OpenGL primitives
Animation
SIGGRAPH video break
Windows and viewports
Clipping

OpenGL conventions

Function names look like:
gl[action] [#][data type] [v](…)

Action tells you what the function does
Data type tells you what type (float,
double, int, etc.) it works with
Number tells you how many it takes
A ‘v’ tells you that this function takes
vector (pointer) input

Top-level documentation only refers
to functions by ‘action’

OpenGL Data types

GLuint,
GLenum,
GLbitfield

unsigned int32-bit unsignedui

GLushortunsigned short16-bit unsignedus

GLshortshort16-bit ints

GLubyte,
GLboolean

unsigned char8-bit unsignedub

GLint,
GLsizei

int32-bit integeri

GLbytechar8-bit integerb

GLfloatfloat32-bit floatf

GLdoubledouble64-bit floatd

GL typeC typeData TypeSuffix Examples

void glVertex3f(GLfloat x, GLfloat y,
GLfloat z)

void glColor3b(GLbyte red, GLbyte
green, GLbyte blue)

void glMaterialfv(GLenum face,
GLenum pname, const GLfloat
*params)

2

GL Errors

Almost all functions return void
If you want to find out whether
there was an error, you need to call
glGetError()
glGetError() is, in technical terms,
crazy stupid (editor’s opinion)
It’s usually easier to track down
your problem without error codes

Outline for today

OpenGL conventions
OpenGL program structure
OpenGL primitives
Animation
SIGGRAPH video break
Windows and viewports
Clipping

When do I draw stuff?
GLUT can give you a callback when the
window needs to be redrawn

glutDisplayFunc, glutReshapeFunc
Not useful for animation

GLUT can give you a callback whenever
it’s not busy or every few milliseconds

glutIdleFunc, glutTimerFunc

You can also draw whenever you want
pp1, for example, draws in response to mouse
events

An OpenGL Drawing Function
void drawMyStuff(void) {

// Clear the window
glClear(GL_COLOR_BUFFER_BIT);

// Do my drawing
glBegin(SOME_PRIMITIVE_TYPE);
…
glEnd();
glBegin(SOME_OTHER_PRIMITIVE_TYPE);
…
glEnd();

// I’m really done, put my pixels on the screen
glFlush();

}

Drawing GL Primitives
// Set up color, texture, location, etc.
glColor3f(1.0f,0.0f,0.0f);

// Tell GL what kind of data to get ready for
glBegin(GL_POINTS);

// Draw vertices
glVertex3d(1.0,2.0,5.0);
glVertex3d(2.0,3.0,10.0);

// Maybe change some properties
// and maybe draw some more vertices

// Tell GL you’re done drawing for a while
glEnd();

Too many slides without a picture

3

Outline for today

OpenGL conventions
OpenGL program structure
OpenGL primitives
Animation
SIGGRAPH video break
Windows and viewports
Clipping

Important GL Primitives: Points
GL_POINTS

Treats each vertex as a single point.
Vertex n defines point n.
N points are drawn.

glPointSize(GLfloat size)
Sets the diameter (pixel) of points.
Subtext: A GL_POINT is not necessarily a pixel

[simple.cpp mathfunc.cpp sier.cpp]

Important GL Primitives: Lines
GL_LINES

Treats each pair of vertices as a line segment. N/2
lines are drawn.

GL_LINE_STRIP
Draws a connected group of line segments from the
first vertex to the last. N-1 lines are drawn.

GL_LINE_LOOP
Like GL line strip but it connects the last point to
the first point.

glLineWidth(GLfloat width);
Specifies the width of lines (in pixels)

[polyline.cpp stip.cpp]

Important GL Primitives: Polygons
GL_TRIANGLES

Treats each triplet of vertices as a triangle segment.
N/3 triangles are drawn.

GL_TRIANGLE_STRIP
Draws a connected group of triangles; each new
vertex starting from the third adds a new triangle.

GL_QUADS, GL_QUAD_STRIP
glRect is a shortcut for begin/quad/end

GL_POLYGON

[polygons.cpp, mystery1.cpp, mystery2.cpp]

Outline for today

OpenGL conventions
OpenGL program structure
OpenGL primitives
Animation
SIGGRAPH video break
Windows and viewports
Clipping

Animation 1 (mousemv.cpp)
// somewhere in main()
glutMotionfunc(myMouseMove);

void myMouseMove (int x, int y) {

// put the origin at the bottom-left
y = screenHeight - mousey;
glClear(GL_COLOR_BUFFER_BIT);
make_ngon(x, y, 300, 60);
glFlush();

}

“What’s wrong with this approach?”
-Dan Morris, 2005, every single lecture

4

Single-buffering

All drawing takes place to a single
framebuffer
Graphics hardware scans buffer
whenever it feels like it
Memory-efficient
Good for static scenes
Prone to flickering

Why is flickering worse for large
objects?

Double-buffering

Only update the “real” framebuffer when
you’re finished drawing
Do all your drawing to a separate
framebuffer
Swap the buffers once per frame
Terminology:

The “front buffer” is shown on the screen
The “back buffer” is where you draw

What are some disadvantages of
double-buffering?

Double-buffering in OpenGL
GLUT / CS148:

// glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

// glFlush();
glutSwapBuffers();

Functions you might see down the road:

// For non-GLUT windows GL apps
SwapBuffers(hdc);

// If you need to manually control the current buffer…
glDrawBuffer(GL_BACK); // or GL_FRONT

Tearing
If the buffer-swap happens while
you’re drawing, can get part of one
“finished” frame and part of another
Solution: hardware makes sure not
to buffer-swap while the monitor is
refreshing
Downside: your program blocks

Which way was this
circle moving?

Animated OpenGL programs

glutIdleFunc(): please give me CPU
time to think

glutPostRedisplay(): please call my
display function sometime soon

Recommended software design:
Update your virtual world in idle()
Do all your drawing in display()

Animation: Using time
Bad (but common) way to move an object
at constant velocity:

void idle() {
object_position += MAGIC_NUMBER;

}

What’s wrong with this approach?

void idle() {
double curtime = CS148::getTime();
double elapsed = last_time – curtime;
object_position += MAGIC_NUMBER * elapsed;
last_time = curtime;

}

5

Animation examples

[animate.cpp rgb.cpp]

Also some great hints about what’s
coming next:

3D positions
3D transformations
OpenGL matrix stack

SIGGRAPH video break

Dual Photography, Pradeep Sen at al,
SIGGRAPH 2005

Terms:
Helmholtz reciprocity
Re-lighting

Outline for today

OpenGL conventions
OpenGL program structure
OpenGL primitives
Animation
SIGGRAPH video break
Windows and viewports
Clipping

World Windows and Viewports

World window: what part of my
model should OpenGL display?
Viewport: where should that image
go in the window?

whatever units you like pixels

World Windows and Viewports in GL

gluOrtho2D(left, right, bottom, top)
Show the part of my 2D world that
lives in this rectangle

glViewport(left, bottom, w, h)
Use only this rectangle within my
window

Games often use multiple viewports

Aspect Ratio

World window is always mapped to
the viewport
If they don’t have the same aspect
ratio (width / height), the image will
be distorted

6

Outline for today

OpenGL conventions
OpenGL program structure
OpenGL primitives
Animation
SIGGRAPH video break
Windows and viewports
Clipping

Clipping
Pixels don’t get drawn outside the
viewport
A “clipper” takes all primitives that would
end up partially outside the viewport and
“clips” them so they fit
Throws them away primitives that are
entirely outside the viewport
Lives between vertex input and the
rasterizer
So why do we care?

Clipping for lines

A line-clipper:
Does nothing for lines in the window (CD)
Eliminates lines outside the window (AB)
Clips endpoints for lines that are partially
in the window (ED, BC, AE)

A B

C

DE

Clipping, take one

compute line equations (y = mx+b)
for the four sides of the clip region;

for each line to be clipped
compute the intersection with each clip
region border (two equations, two
unknowns)
if the line intersects all clip borders
outside the box, throw it out
…handle the other cases…

What’s wrong with this approach?

Cohen-Sutherland clipping

A border of the clipping region is
defined by a line
This line defines two “half-spaces”
We’ll call the half-space that’s
outside the clipping region “true”
A point gets a “half-space bit” from
each line

true (1)

false (0)
Gets a half-space
bit of 0 from this
border

Half-space codes

The “half-space code” for a point is a
4-bit code containing hs-bits for the
four lines

We’ll put bits in the order (l,r,b,t)

What’s the hs code for the blue point?
Where would a point with hs code 0010 be located?

7

Half-space codes for segments

Given half-space codes c1 and c2 for
two ends of a segment, how do we
check the trivial (both endpoints)
inside-outside cases?

Trivially-inside: (c1 == 0) && (c2 == 0)
Trivially-outside: c1 & c2

0000

1001

1000

1010

0001

0010 0010

0100

0101

Lots of possibilities

Even after we take care of the trivial
cases, we could be entirely outside or
partially outside

Cohen-Sutherland algorithm

Clip one point to one edge at a time
Keep going until you find a trivial case
Assume we have the clip region stored in
variables xmin, xmax, ymin, ymax
Here’s a function to generate a half-space
code for a point:

int code(float x, float y) {
return (

(x<xmin)<<3 | (x>xmax)<<2 |
(y<ymin)<<1 | (y>ymax)

);
}

void clip (float x1, float y1, float x2, float y2) {

int c1 = code(x1,y1), c2 = code(x2,y2);
float dx, dy;

while (c1 | c2) {
if (c1 & c2) return;
dx = x2 - x1; dy = y2 - y1;
if (c1) {

if (c1 & 8){y1 += dy * (xmin-x1)/dx; x1 = xmin; }
else if (c1 & 4){y1 += dy * (xmax-x1)/dx; x1 = xmax; }
else if (c1 & 2){x1 += dx * (ymin-y1)/dy; y1 = ymin; }
else if (c1 & 1){x1 += dx * (ymax-y1)/dy; y1 = ymax; }
c1 = code(x1, y1);

} else {
if (c2 & 8){y2 += dy * (xmin-x2)/dx; x2 = xmin; }
else if (c2 & 4){y2 += dy * (xmax-x2)/dx; x2 = xmax; }
else if (c2 & 2){x2 += dx * (ymin-y2)/dy; y2 = ymin; }
else if (c2 & 1){x2 += dx * (ymax-y2)/dy; y2 = ymax; }
c2 = code(x2, y2);

}
}
linedraw(x1, y1, x2, y2);

}

Next Time

A bit more OpenGL
Display lists
Vertex arrays

2D Transformations

