
1

Display Lists
2D Transformations

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
June 30, 2005

Outline for today

Moving Data Around
2D Transformations
SIGGRAPH video break
Matrix Transformations
Composite Transformations

Sending data to the video card

OpenGL needs to know where you
want to put your vertices
There are several ways to send your
vertices to the video hardware

The first part of today’s lecture will
explore three different ways

Approach 1: Immediate Mode

In “immediate mode” (everything so far
in CS148), commands are sent to the
video card immediately (hence the name)

// Somewhere in my drawing code:
glBegin(GL_POINTS);

glVertex2i(10,20);
glVertex2i(40,50);

glEnd();

What’s wrong with this approach?

Approach 2: Display lists
[list.cpp linelist.cpp stroke.cpp]

// Just once, in some initialization function:

// Ask OpenGL for one new display list
g_mySlickFerrariDL = glGenLists(1);

// Record the display list
glNewList(g_mySlickFerrariDL, GL_COMPILE);
glBegin(GL_TRIANGLES);

// …maybe millions of glVertex calls…
// …maybe change colors, other GL commands…

glEnd();
glEndList();

// Every frame I just need to do:
glCallList(g_mySlickFerrariDL);

Display lists: Pros and Cons

Save the overhead of making
1,000,000 function calls per frame
Can draw the same object multiple
times with different OpenGL state

What’s one other advantage of
using display lists?

What’s one disadvantage of
using display lists?

2

Immediate Mode with Arrays
Usually I don’t know all my vertex locations when
I code my program
So let’s say I read my vertices from a file into a
big array…

glBegin(GL_TRIANGLES);
for(int i=0; i<numVertices*6; i+=6) {

glVertex2i(vertices[i+0],vertices[i+1]);
glVertex2i(vertices[i+2],vertices[i+3]);
glVertex2i(vertices[i+4],vertices[i+5]);

}
glEnd();

What’s wrong with this approach?

Approach 3: Vertex Arrays [varrays.cpp]

Tell OpenGL to grab all of your vertices
from a block of memory

// somewhere in my drawing code

// tell GL I’m going to use vertex arrays
glEnableClientState(GL_VERTEX_ARRAY);

// tell GL where my vertices live
glVertexPointer(2,GL_FLOAT,0,myvertices);

// tell GL to draw my triangles
glDrawArrays(GL_TRIANGLES,0,numVertices);

// leave GL the way I found it
glDisableClientState(GL_VERTEX_ARRAY);

Vertex Arrays: Pros and Cons

Pro: Avoid the overhead of
1,000,000 function calls
Pro: You can change the
contents of the array whenever
you want (unlike display lists)
Con: Vertex data still gets
copied every frame

What do super-hard-core game
developers do?

Method 4: Vertex buffer objects
Allocate memory on the video card,
only transfer once
Similar to display lists but often
faster

Outline for today

Moving Data Around
2D Transformations
SIGGRAPH video break
Matrix Transformations
Composite Transformations

2D Transformations

Transformations are functions that
change the position of a point

Take one point in Rn, return another
point in Rn

If we apply a transformation to
every point in an object, we can
change the shape or position of the
whole object

3

2D Translation

x’ = x + tx y’ = y + ty

Moves input point by a vector [tx,ty]

tx = 2.0

ty = 1.0
[tx,ty]

2D Translation for Objects

x’ = x + tx y’ = y + ty

Moves entire object by [tx,ty]

tx = 2.0

ty = 1.0

2D Scale
x’ = x * sx y’ = y * sy

Multiplies input point by (sx,sy)
Moves point relative to the origin

What would the scale (1,-1) do?

sx = sy = 2.0

(this is a
uniform scale)

[x,y]
[2x,2y]

2D Scale for Objects
x’ = x * sx y’ = y * sy

Resizes entire object

What else did this do to my object?

sx = sy = 2.0

2D scaling with a fixed point
Maybe we want (xf,yf) not to move when we scale...

What point doesn’t move when we scale?

How can that help us scale with a fixed point?

x’ = xf + (x - xf)sx y’ = yf + (y - yf)sy

x’ = x * sx + (1 - sx) xf y’ = y * sy + (1 - sy) yf

Why use the second form of these equations?

sx = sy = 2.0

(xf,yf) = object center

2D scaling with a fixed point

What we really just did was
combine two translations and a
scale

Translate by (-xf,-yf) Scale by (sx,sy) Translate by (xf,yf)

4

2D Rotation
Moves a point θ degrees along a circle
centered at the origin

But the other transformations had a
formula on their slides...

Doesn’t rotation get a formula too? Isn’t rotation good enough for Mr. Bigshot graphics
lecturer? This is outright transformationism! As someone who believes in the equity of
all transformations, I’m appalled by this behavior and I’m going to write a report to the
something or other board of something or other unless I get a formula for rotation also.
Right now.

θ = 90˚

2D Rotation
This is straightforward in polar coordinates:

x = r cos φ y = r sin φ
x’ = r cos(φ+θ) y = r sin(φ+θ)

But converting to polar coordinates is a mess
So we’ll use trig identities…

x’ = r cos(φ+θ) = r cos φ cos θ - r sin φ sin θ
y’ = r sin(φ+θ) = r cos φ sin θ + r sin φ cos θ

x’ = x cos θ - y sin θ
y’ = x sin θ + y cos θ

2D Rotation for objects

What else did this do to my object?

How do we fix this?

2D Rotation about a fixed point

Combine two translations and a
rotation

To rotate about a point (xr,yr):

x’ = xr + (x - xr) cos θ - (y - yr) sin θ

y’ = yr + (x - xr) sin θ + (y - yr) cos θ

SIGGRAPH video break

Ron Fedkiw et al (Stanford)… various
physical simulation techniques

Physical simulation: using physics to get
realistic behavior from virtual objects

Examples: f = ma, Navier-Stokes

Simulation vs. rendering

Outline for today

Moving Data Around
2D Transformations
SIGGRAPH video break
Matrix Transformations
Composite Transformations

5

Representing Transformations

We do lots of transformations in
computer graphics
We do so many transformations in
computer graphics that I want to
say that again
We do lots of transformations in
computer graphics
Need an efficient way of
representing transformations

Homogeneous Coordinates

Write a point (x,y) as a triple:

[xh,yh,w]

…where xh = x*w, yh = y*w

w is called the ‘homogeneous
coordinate’ and is usually equal to
one

When w = 1, x = xh and y = yh

Matrix transformations

In homogeneous coords, our basic
transformations can be written as
matrix multiplications

I submit to you that this matrix
represents a translation by [tx,ty]:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
10
01

ty
tx

2D Matrix Translation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++
++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

11*1*0*0
1**1*0
1**0*1

1100
10
01

tyy
txx

yx
tyyx
txyx

y
x

ty
tx

From a few slides ago:

x’ = x + tx y’ = y + ty

Hooray! It works!

2D Matrix Transformations

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
???
???

1
'
'

y
x

y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
10
01

1
'
'

y
x

ty
tx

y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
0cossin
0sincos

1
'
'

y
x

y
x

θθ
θθ

Translation
by [tx,ty]

Scale
by [sx,sy]

Rotation
by θ

Outline for today

Moving Data Around
2D Transformations
SIGGRAPH video break
Matrix Transformations
Composite Transformations

6

Composite transformations

Often we want to apply multiple
transformations sequentially

Easy to do with matrices: just build a new
transformation matrix as the product of
multiple transformations

Any sequence of transformations can
be collapsed into one matrix by
multiplying the individual
transformation matrices

Example: Composite Translation

Let’s say we want to translate a point by
[tx1,ty1], then by [tx2,ty2]
The two transformation matrices are:

Their product is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
210
201

100
110
101

ty
tx

ty
tx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
2110
2101

100
210
201

100
110
101

tyty
txtx

ty
tx

ty
tx

Example: Rotation with a fixed point

Let’s say we want to rotate a point by θ
degrees, with a fixed point [fx,fy]

Translate, then rotate, then translate

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
10
01

100
0cossin
0sincos

100
10
01

fy
fx

fy
fx

θθ
θθ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

100
fy+fy*cos-fx*sin-cossin
fx+fy*sin+fx*cos-sincos

θθθθ
θθθθ

Fun with composite transformations

How would you transform the dark triangle
into the light triangle?

Instances

Consider a scene composed of many simple 2D
objects

we could store vertices for each object
…or we could define simple primitives at
convenient locations, and apply transformations
before I draw each object

Instances as Display Lists

A typical program structure in graphics
Define vertices for a few primitives that will
appear in many places
Render those vertices into a display list for each
primitive
At every frame of your program, ask OpenGL to
apply a separate transformation each time you
call your display list

[movingsquares.cpp]
A bigger program that we now have the tools to
understand

7

Next time

3D Transformations
Transformations in OpenGL

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
1.221.123.2256
1.1233.121.22.3
2.555.66.53.1

