Meshes Modeling Objects

CS148: Intro to CG Instructor: Dan Morris TA: Sean Walker July 12, 2005

Outline for today

- Face culling
- Representing meshes
- Representing surfaces
- Drawing surfaces

Being stingy with our triangles

• When we draw Lego Man, we might draw lots of triangles that end up getting covered up

 \circ It's not useful to draw the triangles on the other side of Lego Man

Outline for today

- Face culling
- \circ Representing meshes
- Representing surfaces
- Drawing surfaces

Representing models

- Models so far were made of triangles or simple primitives that we hard-coded in our programs
- "Real" models have too many polygons to create manually
- Need a way to store and represent objects

What are some disadvantages of having redundant vertices?

Meshes in OpenGL [meshes.cpp]

 Data structures like this are very common
 In fact, a very common way of sending meshes to OpenGL is:

// Tell GL where to find vertices
glVertexPointer(3,GL_FLOAT,0,
 myObject.vertices);

// Draw ``indexed triangles"
glDrawElements(GL_TRIANGLES,
 myObject.nTriangles,GL_UNSIGNED_INT,
 myObject.triangles);

- Most mesh file formats store vertices and triangles in a format more or less like this
 Popular formats: .3ds, .obj, .stl
- Most formats add a little more data to each vertex:
 - Surface normals
 - Color information
 - Texture coordinates
 - These topics make up the next few classes in CS148

- Space
- Level of detail
- Modeling
- Non-polygon renderers
- OpenGL (mostly) only knows about triangles and vertices, so we're leaving the GL universe for a bit...

Ruled Surfaces: Example 1

What's unique about this ruled surface?

 $\mathbf{p}(u,v) = \mathbf{p}0(u) + v\mathbf{d}$

What surface does this define if pO(u) = (R cos(u), R sin(u), 0)?

Ruled Surfaces: Example 2

What's unique about this ruled surface?

p(u,v) = (1-v)p0 + vp1(u)

What surface does this define if p1(u) = (R cos(u), R sin(u), 0)?

Quadrics

- $\,\circ\,$ Surfaces defined by an algebraic equation of degree 2
- It turns out *any* quadric can be transformed into a very small handful of surfaces, so knowing how to draw a small set of surfaces could let us represent a lot of objects

	Quadrics		
	Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	
	Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	
	Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	

