
1

Lighting and Shading

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
July 14, 2005

Pre-lecture business

meshes.cpp example from last class
pp2 is due today
pp3 goes out today
start thinking about pp4
Remote students: email fax #’s

Outline for today

Lighting
Shading
Lighting and shading in OpenGL

What have we done so far?

We can model objects or load
objects that someone else modeled
We can create a scene with objects
and a camera
We know how our objects get
transformed and rasterized

OpenGL magic

pixelsobject
coordinates

What color is an object?

So far, we’ve used glColor3f() to
say “my object is blue”
But what color should a blue
sphere’s pixels really be?

What color is an object? [light.cpp]

Pixel color – and color in the real
world – depend on:

Light color and position
Material properties
Camera position
Object geometry, medium

2

We can’t capture all of these things…

…so we make approximations
depending on our compute power,
our need for realism, etc.

Illumination Models
Part of our approximation is our mathematical
representation of how light interacts with objects

For example, one illumination model might be:

pixel color == object color

What would a sphere look like under this
illumination model?

A blue sphere with this
illumination model

Illumination Models

Today we’ll look at the individual
illumination models that make up
the OpenGL lighting system:

Diffuse lighting
Ambient lighting
Specular lighting

All of our examples will be in
grayscale for right now

Lighting framework
We want to decide what color some point p on an
object should be from a viewer’s perspective
What data do we have to work with?

p

n

s

light

eyev

Light
Position
Brightness

Object
Material
Surface normal

Diffuse Lighting Model

A fraction of incoming light is reradiated
“diffusely” in all directions
Some of this light will reach the eye
Since light is radiated equally in all
directions, the orientation of the surface
relative to the eye doesn’t matter

Diffuse Light: Surface orientation

The orientation of the surface relative to
the light does matter
The “brightness” of a surface depends on
how many photons hit a unit area
If the light “sees” more of the object, it
will hit it with more photons

When the object
faces away from the
light, a smaller
portion of the light’s
energy hits a unit
area on the object

3

Diffuse Light: Lambert’s Law
If s (vector to light) and n (normal) are “more
aligned”, the object should be brighter
What operation tells us “how aligned” two
vectors are?
Lambert’s law:

Id = Ld(us•un)

Id: output (pixel) brightness
Ld: light intensity
us and un: unit versions of s and n

What’s the most important missing
piece here?

Diffuse Light: Diffuse Coefficient

rd: diffuse reflection coefficient
Captures many complex properties
of an object in one number: how
much light does it reflect?
OpenGL convention: 0.0 --> 1.0

Specular Lighting Model

Light scatters most strongly in one
direction
Specifically, light scatters most
strongly in the same direction a
mirror would reflect

Specular (Mirror-Like) Reflection

Angle of incidence ==
angle of reflection
Clearly r will be useful in deciding
how bright the object appears…

n

θ θ
r

s’

What is r in terms of s and n?
Decompose s’:

m = (s’ • un)un (parallel to n)
e = s’ – m (perpendicular to n)

What is r in terms of e and m?
r = e + (-m)
r = e + (-m) = (s’ – m) – m = s’ – 2m
r = s’ – 2 (s’ • un) un

n

r
s’

m

e e

-m

Specular Illumination

More light goes out along the direction r
The more the view axis v lines up with r,
the brighter the object should appear
Is = Lsrs(ur•uv)

What does each term mean?

Doesn’t capture the fact that some
materials are “more specular” than others
rs tells us what color the material reflects,
but now how that color falls off with angle

4

Specular Illumination: Phong Model

Add a parameter f that tells us “how
specular” a material is:

Is = Lsrs(ur•uv)f

Higher f = more specular; light falls
off faster as v moves away from r
In OpenGL terminology, f is
“shininess”

Specular Illumination: Examples

Which sphere is
shinier?

Same shininess
as above spheres,
both have reduced
rs

Ambient Lighting Model

Stuff pointing away from lights isn’t really
pitch black
But we can’t model all the reflections in a
real scene...
So we just add “ambient lighting” that
doesn’t depend on orientation:

Ia = Lara

Ambient Lighting: Examples

Too much ambient light: everything
gets washed out
Too little ambient light: very deep
shadows

Putting it All Together

In our illumination model, the light at a
point is equal to:

I = Lara + Ldrd(us • un) + Lsrs (ur • uv)f

We can do this computation for all lights
in a scene and add the results together

What happens if the surface normal
points away from the light?

Outline for today

Lighting
Shading
Lighting and shading in OpenGL

5

An aside: Normals in OpenGL

Normals in OpenGL are associated with vertices,
not faces
Why? Objects in 3D graphics are usually discrete
approximations of continuous real-world objects
Surface normal actually changes over the surface
of the “real” object
Vertex normals are ”samples” of the real normal

An aside: Normals in OpenGL

Before I call glVertex(), I usually call:

glNormal3f(x,y,z);

To tell GL what the current surface normal is.
Normals are transformed through the whole
pipeline, so they’re specified in object coordinates
Mesh files usually specify normals

Limitations of our lighting model

Now we know how to compute the
pixel color for a given point
This took a few multiplications, so it
would be expensive to do this for
every single pixel
Plus, we don’t usually have exact
surface normals everywhere, since
we often approximate curved
objects with flat polygons

Shading

Shading is the process of filling
polygons with color based on the
illumination at some points on the
polygon
Usually we evaluate I (illumination)
at vertices, and use that data to
shade the polygon

Flat Shading

Simplest, fastest shading algorithm:
Pick a point on the polygon
Compute illumination at that point
Fill the whole polygon with that color

Gouraud Shading

Most realistic shading algorithm
supported by OpenGL

Compute illumination at all vertices
Interpolate illumination values when
rasterizing the polygon

4 5

3

2

1

6

Flat Shading vs. Gouraud Shading

When might I want flat
shading?

Phong Shading

Instead of interpolating color,
interpolate normals and re-compute
color at each pixel
Also called “per-pixel” lighting

Phong Shading
More realistic images without additional
geometry
Allows specular highlights within a face
Not supported by OpenGL, but starting
to be supported by hardware

Outline for today

Lighting
Shading
Lighting and shading in OpenGL

OpenGL is state-based

Name an OpenGL command that
actually results in a change to
the framebuffer.

Most commands just set up state
that will affect what happens when
you send the next vertex
Lighting and materials work this
way…

GL Lighting: Globals

Set up a shading model:
glShadeModel(GL_SMOOTH);
glShadeModel(GL_FLAT);

Enable lighting:
glEnable(GL_LIGHTING);

These things generally happen once
in your program…

7

GL Lighting: Lights

Turn on one or more lights:
glEnable(GL_LIGHT0);

Specify light properties:

float pos[4] = { 1.0 , 1.0 , 1.0 , 1.0 };
float ld[4] = { 1.0 , 1.0 , 1.0 , 1.0 };
…
glLightfv(GL_LIGHT0, GL_POSITION, pos);
glLightfv(GL_LIGHT0, GL_DIFFUSE, ld);
glLightfv(GL_LIGHT0, GL_AMBIENT, la);
glLightfv(GL_LIGHT0, GL_SPECULAR, ls);

These things generally happen once per frame…

GL Lighting: Lights

Lights are transformed by the modelview matrix
but not the projection matrix

In what coordinate system does GL do its
lighting calculations?

Sometimes I want a light to “move with the
camera”, sometimes I want it to stay “fixed in the
scene”

How do I specify a light that moves with the
camera without knowing the camera
position?

How do I specify a light that stays fixed in the
scene?

GL Lighting: Materials

Specify material properties:

float shininess[1] = { 50.0 };
float diff[4] = { 1.0 , 0.0 , 0.0 , 1.0 };

glMaterialfv(GL_FRONT, GL_DIFFUSE, diff);
glMaterialfv(GL_FRONT, GL_AMBIENT, amb);
glMaterialfv(GL_FRONT, GL_SPECULAR, spec);
glMaterialfv(GL_FRONT, GL_SHININESS,
shininess);

These things generally happen once or a few
times per object…

GL Lighting: Geometry

Do just what we’ve always done to render
primitives, but add a normal to each
vertex:

glBegin(GL_TRIANGLES);
glNormal3f(1.0,0.0,0.0);
glVertex3f(2.0,4.0,5.0);
glNormal3f(1.0,0.0,0.0);
glVertex3f(2.0,4.0,7.0);
…

Normals are generally specified for each
vertex

GL Lighting: Geometry

Normals are transformed through the whole
pipeline along with their vertices

What coordinate system do we specify normals
in?

Normals must be of unit length, unless you call
glEnable(GL_NORMALIZE);

Why do we almost never enable
GL_NORMALIZE?

What type of transformation will badly mess
up your lighting?

GL Lighting: Examples

[movelight.cpp]

[rendering.cpp]

[materials.cpp]

8

Next Time

Texture-mapping

