Pre-lecture business

Y o meshes.cpp example from last class
o pp2 is due today
o pp3 goes out today

Lighting and Shading o start thinking about pp4
o Remote students: email fax #'s

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker

July 14, 2005

What have we done so far?

Outline for today
o We can model objects or load

o Lighting objects that someone else modeled
o Shading o We can create a scene with objects

o Lighting and shading in OpenGL and a camera
o We know how our objects get

transformed and rasterized

}-*—» OpenGL magic

object
coordinates
What color is an object? What color is an object? [light.cpp]
o So far, we've used glColor3f() to o Pixel color — and color in the real
say “my object is blue” world - depend on:
o But what color should a blue Light color and position
sphere’s pixels really be? Material properties

Camera position
Object geometry, medium

FY S )




We can't capture all of these things...

o ...s0 we make approximations
depending on our compute power,
our need for realism, etc.

a N

Illumination Models

o Part of our approximation is our mathematical
representation of how light interacts with objects

o For example, one illumination model might be:

pixel color == object color

What would a sphere look like under this
illumination model?

A blue sphere with this
illumination model

Illumination Models

o Today we’ll look at the individual
illumination models that make up
the OpenGL lighting system:

Diffuse lighting
Ambient lighting
Specular lighting

o All of our examples will be in

grayscale for right now

Lighting framework

o We want to decide what color some point p on an
object should be from a viewer’s perspective
o What data do we have to work with?

o Light
Position
n Brightness

s o Object

> Material
p - v eye Surface normal

light

Diffuse Lighting Model

o A fraction of incoming light is reradiated
“diffusely” in all directions

o Some of this light will reach the eye

o Since light is radiated equally in all
directions, the orientation of the surface
relative to the eye doesn’t matter

Diffuse Light: Surface orientation

o The orientation of the surface relative to
the light does matter

o The “brightness” of a surface depends on
how many photons hit a unit area

o If the light “sees” more of the object, it
will hit it with more photons

When the object

faces away from the
light, a smaller
portion of the light's
energy hits a unit
—_— area on the object




Diffuse Light: Lambert’'s Law

o If s (vector to light) and n (normal) are “more
aligned”, the object should be brighter

o What operation tells us “how aligned” two
vectors are?

o Lambert’s law:

Iy = Ly(useuy)
I4: output (pixel) brightness

Lg: light intensity
ug and u,: unit versions of s and n

What’s the most important missing
piece here?

Diffuse Light: Diffuse Coefficient

o ry: diffuse reflection coefficient

o Captures many complex properties
of an object in one number: how
much light does it reflect?

o OpenGL convention: 0.0 --> 1.0

20

Specular Lighting Model

o Light scatters most strongly in one
direction

o Specifically, light scatters most
strongly in the same direction a
mirror would reflect

Specular (Mirror-Like) Reflection

o Angle of incidence ==
angle of reflection

o Clearly r will be useful in deciding
how bright the object appears...

n

Whatis r in terms of s and n?

o Decompose s':

m = (s’ e u,)u, (parallel to n)
e = s’ - m (perpendicular to n)

o What is r in terms of e and m?
r=e+(-m)
r=e+(-m)=(s'"-m)-m=s"-2m
r=s"-2(s"eu,) u,

n
r

Specular lllumination

o More light goes out along the direction r

o The more the view axis v lines up with r,
the brighter the object should appear

olg= LSI‘S(U,,‘UV)

What does each term mean?

o Doesn’t capture the fact that some
materials are “more specular” than others

o rg tells us what color the material reflects,
but now how that color falls off with angle




Specular lllumination: Phong Model

o Add a parameter f that tells us “how
specular” a material is:

IS = LSrS(uI’. uv)f

o Higher f = more specular; light falls
off faster as v moves away from r

o In OpenGL terminology, f is
“shininess”

Specular lllumination: Examples

Which sphere is
shinier?

Same shininess
as above spheres,
both have reduced

Is

Ambient Lighting Model

o Stuff pointing away from lights isn’t really
pitch black

o But we can’t model all the reflections in a
real scene...

o So we just add “ambient lighting” that
doesn’t depend on orientation:

Ia = Lara

Ambient Lighting: Examples

o Too much ambient light: everything
gets washed out

o Too little ambient light: very deep
shadows

Putting it All Together

o In our illumination model, the light at a
point is equal to:

I =L, + Lgrg(ug ® uy) + Lgrg (U, o u,)f

o We can do this computation for all lights
in a scene and add the results together

What happens if the surface normal
points away from the light?

Outline for today

o Lighting
o Shading
o Lighting and shading in OpenGL




An aside: Normals in OpenGL

o Normals in OpenGL are associated with vertices,
not faces

o Why? Objects in 3D graphics are usually discrete
approximations of continuous real-world objects

o Surface normal actually changes over the surface
of the “real” object

o Vertex normals are “samples” of the real normal

Limitations of our lighting model

o Now we know how to compute the
pixel color for a given point

o This took a few multiplications, so it
would be expensive to do this for
every single pixel

o Plus, we don’t usually have exact
surface normals everywhere, since
we often approximate curved
objects with flat polygons

Flat Shading

o Simplest, fastest shading algorithm:

Pick a point on the polygon
Compute illumination at that point
Fill the whole polygon with that color

An aside: Normals in OpenGL

o Before I call glVertex(), I usually call:

o gINormal3f(x,y,z);

To tell GL what the current surface normal is.

o Normals are transformed through the whole
pipeline, so they're specified in object coordinates

o Mesh files usually specify normals

Shading

o Shading is the process of filling
polygons with color based on the
illumination at some points on the
polygon

o Usually we evaluate I (illumination)
at vertices, and use that data to
shade the polygon

Gouraud Shading

o Most realistic shading algorithm
supported by OpenGL
Compute illumination at all vertices

Interpolate illumination values when
rasterizing the polygon




Flat Shading vs. Gouraud Shading

i

When might I want flat
shading?

Phong Shading

o Instead of interpolating color,
interpolate normals and re-compute
color at each pixel

o Also called “per-pixel” lighting

Phong Shading

o More realistic images without additional
geometry
o Allows specular highlights within a face

o Not supported by OpenGL, but starting
to be supported by hardware

Outline for today

o Lighting
o Shading
o Lighting and shading in OpenGL

OpenGL is state-based

o Name an OpenGL command that
actually results in a change to
the framebuffer.

o Most commands just set up state
that will affect what happens when
you send the next vertex

o Lighting and materials work this
way...

GL Lighting: Globals

o Set up a shading model:
glShadeModel(GL_SMOQOTH);
glShadeModel(GL_FLAT);

o Enable lighting:
glEnable(GL_LIGHTING);

These things generally happen once
in your program...




GL Lighting: Lights

o Turn on one or more lights:
glEnable(GL_LIGHTO);

o Specify light properties:

float pos[4] ={1.0,1.0,1.0,1.03};
float Id[4] = {1.0,1.0,1.0, 1.0 };

glLightfv(GL_LIGHTO, GL_POSITION, pos);
glLightfv(GL_LIGHTO, GL_DIFFUSE, Id);
glLightfv(GL_LIGHTO, GL_AMBIENT, la);
glLightfv(GL_LIGHTO, GL_SPECULAR, Is);

o These things generally happen once per frame...

GL Lighting: Lights

o Lights are transformed by the modelview matrix
but not the projection matrix

In what coordinate system does GL do its
lighting calculations?

o Sometimes I want a light to “move with the
camera”, sometimes I want it to stay “fixed in the
scene”

How do | specify a light that moves with the
camera without knowing the camera
position?

How do | specify a light that stays fixed in the
scene?

GL Lighting: Materials

o Specify material properties:

float shininess[1] = { 50.0 };
float diff(4] = { 1.0, 0.0, 0.0, 1.0 };

glMaterialfv(GL_FRONT, GL_DIFFUSE, diff);
glMaterialfv(GL_FRONT, GL_AMBIENT, amb);
glMaterialfv(GL_FRONT, GL_SPECULAR, spec);
glMaterialfv(GL_FRONT, GL_SHININESS,
shininess);

o These things generally happen once or a few
times per object...

GL Lighting: Geometry

o Do just what we’ve always done to render
primitives, but add a normal to each
vertex:

glBegin(GL_TRIANGLES);
glNormal3f(1.0,0.0,0.0);
glVertex3f(2.0,4.0,5.0);
glNormal3f(1.0,0.0,0.0);
glVertex3f(2.0,4.0,7.0);

o Normals are generally specified for each
vertex

GL Lighting: Geometry

o Normals are transformed through the whole
pipeline along with their vertices

What coordinate system do we specify normals
in?

o Normals must be of unit length, unless you call
glEnable(GL_NORMALIZE);

Why do we almost never enable
GL_NORMALIZE?

What type of transformation will badly mess
up your lighting?

GL Lighting: Examples

[movelight.cpp]

[rendering.cpp]

[materials.cpp]




Next Time

o Texture-mapping

Texture image

Sphere with texture




