
1

Color and Texture

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
July 19, 2005

Pre-Lecture Business

Get going on pp3!
TOBOR’s greatest hits
Exam question review

TOBOR’s Greatest Hits

Tough-guy
TOBOR

Ms. TOBOR

TOBOR’s Greatest Hits

Ripped
TOBOR TOBOR 2050

Transformation Question (3b)

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glRotatef(-90.0 , 0.0 , 1.0 , 0.0);
glScalef(1.0 , 1.0 , 0.5);
glTranslatef (0.0 , 2.0 , 0.0);
glScalef(0.0 , 2.0 , 2.0);
glTranslatef(0.0 , -2.0 , 0.0);
glRotatef(180.0 , 0.0 , 1.0 , 0.0);
glVertex3f(1.0 , 1.0 , 1.0);

(1,0,0)
(0,0,-1)
(0,0,-2)
(0,-2,-2)
(-1,-1,-1)
(-1,1,-1)
(1,1,1)

Transformation Question (3a)

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0 , 0.0 , 1.0);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glRotatef(90.0 , 0.0 , 0.0 , 1.0);
glTranslatef(-1.0 , 0.0 , 0.0);

glMatrixMode(GL_MODELVIEW);
glRotatef(90.0 , 0.0 , 1.0 , 0.0);
glTranslatef(-1.0 , 0.0 , 0.0);

glVertex3f(2.0 , 0.0 , 0.0);

(0,0,0)

(0,-1,0)
(-1,0,0)

(0,0,-1)
(1,0,0)

(2,0,0)

2

Outline for today

Color and Color Spaces
Texture Mapping

What is light?
Photons: “particles of energy”

The intensity of a radiation source
is defined by its rate of photon
emission

The “character” of a photon is
defined by its wavelength

What is a color?

The wavelength of a single photon
defines a color
The wavelength of a beam of “pure”
light (one wavelength) defines a
color

400nm700nm

What’s wrong with this definition?

Intuitively, white is a color, but
white doesn’t have a wavelength.
Most “colors” are really
combinations of wavelengths
How many colors are there in this
rectangle?

Human Color Perception in 1 Slide

Photons hit our eyes and activate
cone photoreceptors
A signal is sent up the optic nerve
to our brain, and we perceive color
There are only three kinds of cones
in our eye, each sensitive to a range
of wavelengths

Why do cone
responses
overlap?

A Better Definition of Color

A color is a particular pattern of
cone activation: a perceived color
There are many combinations of
wavelengths that can produce the
same color

3

Representing Color

We need a way to represent this concept
of color for applications in CG and print
An intuitive way based on what we just
learned:

A color is three numbers, each of which
roughly represents the amount of activation of
one cone type

This is the theoretical basis for the RGB
color model
In practice, R, G, and B are wavelengths
that are intended to optimally stimulate
the RGB cones

The RGB Color Space
Colors are combinations of the primaries
R, G, and B:
C = rR + gG + bB
This is called an “additive color space”
Can represent colors as points in the RGB
coordinate space:

Limitations of RGB

Not all colors can be expressed in a
purely additive space
There are visible colors you can’t
describe with RGB!

What’s a
negative color?

CIE color experiments
1931: folks at CIE gave people dials to control red
green, and blue guns
Gave them a “test color” to match with the dials
If they couldn’t match a color, they could add
some RGB to the test color (this counted as
“negative color”)
Generated standard “color matching” curves

CIE Color

Defined a standard set of “primary
colors” (X, Y, and Z) that could be
mixed together to form the visible
spectrum
These “colors” were actually
mixtures of many wavelengths

CIE XYZ Color Space

X, Y, and Z can be treated as a color
space just like R, G, and B
C = X + Y + Z
If we normalize for total brightness, we
can get values that truly describe color
(tone)
x = X / (X + Y + Z)
y = Y / (X + Y + Z)
z = Z / (X + Y + Z)
If we pick a constant brightness and call it
1.0, we can plot all possible colors on the
x,y space…

4

CIE XYZ Chromaticity Diagram

Represents all the visible colors in
terms of (x,y)
Edges represent pure colors
E is the “white point”

E

Color gamuts
Gamut: the set of colors a particular
device or color space can represent
The triangle shows the standard RGB
gamut… pretty disappointing…
Most display devices are built to roughly
match this

Can any three
visible colors
have a gamut
that fills the
visible space?

Why not use CIE XYZ?

CIE XYZ is a great theoretical space
with an ideal gamut, but it doesn’t
represent:

How we see (cone activation)
How monitors work
How printers work
Anything intuitive to an artist or
programmer

Used to define every other color
space

RGB revisited

What an RGB space really is: a set
of primaries R, G, and B defined in
terms of X and Y
There are many RGB spaces (sRGB,
Adobe RGB, NTSC (TV) RGB)
People keep making up new ones
because they better represent RGB
hardware or because they have
bigger gamuts

What other spaces do we use?

RGB is fairly intuitive and
represents monitor activation well
Doesn’t map well to what printers
can produce
Most printers print on white paper
and the ink removes reflected color
So we define a subtractive color
space for printers…

CMY: A Subtractive Color Space

color = C + M + Y
C cyan, M magenta, Y yellow

(0,0,0) is white, (1,1,1) is black
C = 1 – R, M = 1 – G, Y = 1 – B

5

CMYK: A hack to fix CMY

Printers are built with cyan, yellow,
and magenta ink
(1,1,1) should be black, but in
practice it’s not
So printers add black ink to make
true black

Why else use black ink?

Limitations of RGB and CMY
Some operations are hard to express in
RGB/CMY: make this color “more pale”,
make this color “more vivid”
Image processing applications and artists
often need access to these operations
Presenting a 2D color chooser in RGB is
tough, since a “slice” from the RGB cube
contains very similar colors

The HSV color space

Hue: what tone is this color (red,
blue, teal, etc.)?

Red is 0˚ or 360˚

Saturation: how colorful is this
color?

0 is grayscale, no color

Value: how bright is this color?
0 is black

Visualizing the HSV color space

red

yellow

greencyan

blue
magenta

What color space does Photoshop’s
color picker display?

OpenGL Trivia

There is another (very rarely used) matrix
mode in OpenGL:

glMatrixMode(GL_COLOR);

The color matrix is applied to all (RGBA)
colors before they’re displayed

What might I use the color matrix for?

6

Outline for today

Color and Color Spaces
Texture Mapping

What have we done so far?

We can render 3D objects to the screen in
glorious color
We can apply realistic lighting to objects
using geometry and surface normals
But rendering something like this would
require hella vertices:

Texture Mapping

Pasting a 2D image onto the surface
of a 3D object
Extremely important feature of
OpenGL

Texture Coordinates
I have some .jpg file that I want on my object…
Define a 2D “texture coordinate space” for the pixels
in my image

Usually called (u,v), usually uses the interval (0,1)

How can I access the texel (texture pixel) at
coordinate (u,v)?

color3 getTextureValue(float u, float v) {
return myImage[(int)u*width,(int)v*height];

}

1.0

1.0

0.0
0.0

u

v

Texture Coordinates
Assign a texture coordinate to
each vertex in your object
Done manually for simple objects,
stored in mesh files with each
vertex for more complex objects

(0,0)

(0,1)

(1,0)

Texture Mapping Overview

OpenGL maps from texture
coordinates to pixels

How many vertices were used
to define the “puppy cube”?

1.0

1.0

0.0
0.0 (0,0)

(0,1)

(1,0)u

v

7

Texture Mapping Overview
User supplies texture coordinates with each
vertex
OpenGL stores the texture coordinate with each
vertex as it moves through the pipeline
When it comes time to rasterize a polygon, use
the texture coordinates at each vertex to find a
texture coordinate for each pixel
Look up the corresponding texels (texture
pixels) and use them to color each pixel

(0,0)

(0,1)

(1,0)

(0,0)

(1,0)

(0,1)

1.0

1.0

0.0
0.0

u

v

Interpolating Texcoords: Take One
When we’re rasterizing a polygon, we only have
texture coordinates at the corners
We need to interpolate to find tex coords for all
the pixels in between
Let’s do that just like we did with smooth
shading:

Use linear interpolation to find the the tex coords
where the scanline enters the polygon
Use linear interpolation as we move across that
scanline

3

2

1

4 5

What’s wrong with this approach?
Interpolating in 2D means that if two
vertices are 10 pixels apart, I take 10
equal steps as I move across my texture
Because of perspective distortion, equal
2D steps don’t necessarily represent
equal 3D steps!

The solution (the short version)
What OpenGL really does is
interpolate in 3D, by mapping
vertices backward through the
projection matrix and interpolating
there… slower but necessary.

Why didn’t we have to interpolate
in 3D for Gouraud shading?

Texture Sampling: Take One

Now we now how OpenGL finds the
texture coordinates for each pixel in our
polygon… how do we assign a color to
that pixel?

The easiest approach:
I know the (u,v) for a pixel
Use the getTextureValue function we wrote
earlier to get the nearest pixel to our (u,v)
Use that to color our pixel

What’s wrong with this approach?

If we have more texture pixels than
screen pixels (i.e. if our texture is
being “squished”), we can miss pixels
in the texture and get nasty artifacts
and flickering

8

Texture Filtering

What did we do the last time we had to
deal with aliasing?
We used averaging to deal with aliasing in
lines
So we’ll use averaging to deal with
aliasing in textures… each pixel should
use an average of nearby texels

What’s still wrong with this approach?

Doing all that averaging is a lot of
floating point math
If a textured object is really far
away, it seems wasteful to access
lots of extra texels when I don’t
need that much accuracy

A Solution: Mipmapping
Precompute averages for blocks of pixels to
generate smaller, filtered versions of my texture
Each copy of the texture is called a “mipmap”
When it’s time to access texels, access the ones
that are closest to the resolution I need… already
filtered!
Can also interpolate between mipmaps to avoid
“jumping” from one mipmap to the next

Texture mapping in OpenGL (1)
Choose or load texture coordinates for
each of your vertices… we’ll do a simple
quad as today’s example
Load your image into memory or make it
yourself… OpenGL has no standard file
format, so it’s your job to load your
images

We provide you with tga.cpp to load TGA files

(0,0)

(0,1) (1,1)

(1,0)

Texture Mapping in OpenGL (2)
Ask OpenGL for a “name” for a new
texture (works just like display lists):

int myTextureID;
glGenTextures(1, & myTextureID);

Tell OpenGL that this is the texture we’re
going to be working with for now

glBindTexture (GL_TEXTURE_2D,
myTextureID);

Texture Mapping in OpenGL (3)
Send your image to OpenGL… i.e. make a
texture from your image

glTexImage2D (GL_TEXTURE_2D, 0,
format, width, height, 0, format,
GL_UNSIGNED_BYTE, data);

This only supports power-of-two textures
and doesn’t make mipmaps, so we often
use the helpful glu version:

gluBuild2DMipmaps(GL_TEXTURE_2D,
components, width, height, format,
GL_UNSIGNED_BYTE, data);

9

Texture Mapping in OpenGL (4)
// What should OpenGL do with texcoords > 1.0?
glTexParameteri (GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_CLAMP);

// How should OpenGL filter my textures?
glTexParameteri (GL_TEXTURE_2D,

GL_TEXTURE_MAG_FILTER,
GL_LINEAR_MIPMAP_LINEAR);

glTexParameteri (GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

// What should OpenGL do with my texture maps?
glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_MODULATE);
glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_DECAL);

Texture Mapping in OpenGL (5)
Time to render… enable texture-mapping:

glEnable(GL_TEXTURE_2D);

Make sure the current texture is the one you want:

glBindTexture (GL_TEXTURE_2D, myTextureID);

Render and provide texture coordinates with each
vertex:

glBegin(GL_QUADS);
glTexCoord2d(0.0,0.0); glVertex2d(0.0,0.0);
glTexCoord2d(1.0,0.0); glVertex2d(1.0,0.0);
glTexCoord2d(1.0,1.0); glVertex2d(1.0,1.0);
glTexCoord2d(0.0,1.0); glVertex2d(0.0,1.0);

glEnd();

Texture Mapping in OpenGL (6)
Usually clean up after yourself…

After you’re done drawing textured
objects in each frame:

glDisable(GL_TEXTURE_2D);

After you’re done with your textures:

glDeleteTextures(1, & myTextureID);

OpenGL example: loadtexture.cpp

Next Time

Advanced Texture Mapping
Curves and Curved Surfaces

