
1

Selection and Picking
Transparency

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
July 28, 2005

Outline for today

Selection
Video break
Transparency

Selection in OpenGL

Usually when we render our scene, 
the results go to the framebuffer
We can also tell OpenGL “don’t 
render anything, just keep track of 
what would have been rendered”
We can use this to find out what 
objects live in a certain volume
We can use this to find out what 
objects the mouse has clicked on

Basic overview of selection

Use glRenderMode(GL_SELECT) to tell OpenGL 
we’re doing selection, not rendering
Use glSelectBuffer() to give OpenGL a place to tell 
us what objects are selected
Use gluPickMatrix() to define a viewing volume 
that’s right around the user’s mouse position (so 
only those objects don’t get clipped)
Render our scene, Using glPushName() to assign 
“names” to objects as we go through our scene
Use glRenderMode(GL_RENDER) to tell OpenGL to 
go back to rendering, and to ask OpenGL which 
names were selected (not entirely clipped)

Selection examples

[picksquare.cpp]

[pickcube.cpp]

Video Break: Half-Life 2 Tech Demo

Be on the lookout for:
Lighting
Animation
Physics
Texture vs. geometry



2

Outline for today

Selection
Video break
Transparency

Transparency

Many real-world objects are partially 
transparent
Often light passes through media that 
affect light without reflecting it (fog, 
water, etc.)
Often we want object on the screen that 
don’t totally obstruct farther-away objects

Shading in OpenGL (so far)…
So far, when we’ve colored our polygons, we’ve done 
something like this:

Compute the color of each vertex (lighting)
Interpolate those colors to get a color for each fragment 
(shading)
If this fragment passes the depth test, overwrite whatever is in
the frame buffer to send this pixel to the screen

If there’s something in the frame buffer behind our polygon, 
it will get thrown away.

This system doesn’t allow us to represent transparent objects

Alpha
In OpenGL, colors are generally represented as 
four components: RGBA 
A is “alpha”, which controls the transparency of 
an object.

1.0: completely opaque
0.0: completely transparent

We can use the glColor4f or glMaterialfv
commands to control the transparency of the 
current object

Quad color:
(.8,.2,.2,.2)

Quad color:
(.8,.2,.2,1.0)

Blending in OpenGL [transparency.cpp]
To enable blending in OpenGL, call 
glEnable(GL_BLEND)

We call each new fragment the “source” and we call 
the current pixel in the framebuffer the “destination”

OpenGL computes color like this:

red = sr*source.R + dr*dest.R
…same for all four channels (RGBA)…

source.R and dest.R are the source and dest colors
sr and dr are blending factors

What are good blending factors if I want a 
material that’s 20% opaque (A=0.2) to 
blend in with the framebuffer?

Blending factors in OpenGL
We can control the way OpenGL compute 
its blending factors using:

glBlendFunc(sfactor,dfactor)

sfactor and dfactor are chosen from:
GL_ZERO, GL_ONE, GL_DST_COLOR, 
GL_ONE_MINUS_DST_COLOR, 
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, 
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA 

Which one corresponds to the 
blending factors we came up with on 
the previous slide?



3

Complications…
I want to draw this image… two cubes 
with a xparent quad in front of them

What’s wrong with this approach?
Enable blending
Draw an opaque cube at z=0
Draw a transparent quad at z=2
Draw an opaque cube at z=1

A solution…

Generally turn depth-buffer-writing 
off when drawing xparent objects:

glDepthMask(GL_FALSE);

What’s still wrong with this 
approach?

A solution…

Generally try to draw transparent objects 
after you draw all of your opaque objects

Sometimes this is too much of a pain, and 
you settle for less-than-perfect results

E.g. when an object has some transparent 
parts and you’d have to rip apart your code to 
draw them separately

Transparent Textures
Textures can have transparency too… very useful if you 
have multiple billboards in front of each other

The .tga loader we gave you can load 32-bit (RGBA) 
.tga files

Not all images have alpha channels, but if your image 
does, you can load it…

Opaque 
texture

Transparent 
texture

Next Time

Hidden-surface elimination
Terrain
Raytracing


