
1

Hidden Surface Elimination
Raytracing

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
August 2, 2005

Pre-lecture business

Get going on pp4

Submit exam questions by Sunday

Remote folks: let us know if you
have a different fax # than we
used for the midterm or if you will
not be taking the exam at 8:30PST

Review Quiz
What are the three components of the OpenGL lighting
model?

What’s a Bezier patch?

What piece of OpenGL state do we usually modify before
drawing transparent objects?

What is gluPickMatrix used for?

How many points of extra credit does the highest-rated
pp4 get?

How many “extra” points do you get just for demo’ing
your pp4 in class?

Outline for today

Hidden Surface Elimination
Video Break
Raytracing
Terrain Generation

Hidden Surface Elimination
(aka HSE/HSR)

One definition of HSE is just making sure that objects
don’t get drawn on top of things that should be in front
of them
OpenGL uses the depth-buffer (Z-buffer) algorithm to
solve this problem

What’s another approach we could take to this
problem?

This approach is called the “Heedless Painter’s Algorithm”.

Would this approach have any advantage over z-
buffering?

So why do we use z-buffering instead?

Image-Space vs. Object-Space
We call the heedless painter algorithm an “object-space”
approach to HSE

This approach is O(n log n) in the number of polygons in a
scene

Why O(n log n)?

Z-buffering an “image space” approach to HSE

This approach is O(n•m) in the number of polygons in a
scene (n) and the number of pixels in the framebuffer (m)

Why O(n•m)?

What order are the worst-case space requirements for the
two approaches?

2

A-buffering
Like the z-buffer, but for each pixel, maintain a sorted
linked list of all polygons that rasterized here

When drawing each polygon p:

for each pixel this polygon affects
insert p into this pixel’s list
if p is opaque and covers the entire pixel

throw out everything farther away
else

store p’s color and transparency
store the amount of the pixel covered by p

When every object has been drawn:

for each pixel
blend together all the polygons on my list

A-buffering: pros and cons

What advantages does A-
buffering offer?

What disadvantages does A-
buffering come with?

HSR isn’t just for correctness…
These techniques basically avoided the
“messed-up-TOBOR problem”

I.e. using some HSR technique is required to
make a “correct” image

In addition to hiding obscured surfaces,
we’d also like to use HSR to save time

We’d like to avoid even sending hidden
surfaces to GL.
If we have to deal with those surfaces, we’d
like to pass them through as little of our
pipeline as we can.

What’s one HSR technique we’ve used
in GL to accelerate rendering?

HSR is huge for games…

Good HSR techniques are among
the most important things that
game hackers do at game
companies
Often we can throw out almost
100% of the polygons in our world
before we ever start rendering
This lets us use much more complex
models, rendering techniques,
physics, etc.

What surfaces are hidden?

What are three reasons that
surfaces might be hidden in a
game?

Obscured: behind things, in another
room
Too far away
Behind the camera / out of frustum

If I could throw away things outside a
typical 45˚ FOV frustum, what
fraction of my scene can I throw
away?

HSR affects game design…

If these Quake maps have the same
total number of polygons, which
one is probably running faster and
smoother?

3

View Frustum Culling

View frustum culling: throwing away
polygons that don’t live in my view
frustum
For a typical perspective projection, what
parameters define my view frustum?

I.e., if I wanted to test whether a point was in
my view frustum, what would I need to know?

camera

fov

near clip plane

far clip plane

View Frustum Culling: Take One

Assume we have a function:

bool polygonInFrustum(polygon p,
frustum f);

for each polygon p in my scene
if (polygonInFrustum(p,f))

send this polygon to GL;

What’s wrong with this approach?
(or why isn’t this any better…)

2D view culling: quadtrees
A quadtree is a hierarchical data structure that
divides 2D space up into boxes
To build a quadtree for my 2D world, I would:

Create a root node that stores the four corners of
my world
Divide my world into four boxes and create a new
node for each box, storing his own corners
Store a pointer to each box in my root node
Divide each of those boxes into four boxes, and
keep going until the boxes are “small enough”

1

5

2 3

4

2D view culling: quadtrees

Then I might add a pointer to every
object in my world to the leaf (smallest)
nodes of my quadtree
Each object is pointed to by whatever leaf
it “lives in”
Empty nodes will be thrown away

my world my quadtree

View Culling with Quadtrees
When it’s time to render, I might do something like this:

list<node> nodes;
nodes.push_back(root node);
while(nodes.empty() == false)

node n = nodes.pop_front();
if n is a leaf

if he’s partially inside the frustum then render all his objects
else continue

else n must be an internal node
if this node has no children then continue
if this node is entirely outside the frustum then continue
put all of this node’s children on the nodes list

frustum

Quadtrees in practice

When will a quadtree not speed up my
rendering at all?

Describe the best-case speedup for a
quadtree.

What objects might I want to render all
the time, and never put in my
quadtree?

Quadtrees are 2D data structures…
when might they be useful in a 3D
world?

4

Octrees

Octrees are the 3D cousin of quadtrees
The world is recursively divided into eight boxes
at each level of recursion, and culling proceeds
just like it did for quadtrees
Octrees provide very powerful view frustum
culling

SIGGRAPH video break:
Style Translation for Human Motion

We saw in previous video breaks that animation
was often the limiting factor in making 3D
graphics realistic

Goal of this paper: given manually modeled or
captured “walking styles”, apply those styles to
new walking trajectories or new characters

Outline for today

Hidden Surface Elimination
Video Break
Raytracing
Terrain Generation

Interactivity vs. Realism
So far, we’ve focused on interactive
graphics

Everything has to render in about 50ms
Okay to sacrifice realism for speed

Raytracing prioritizes realism over speed
Used for production videos, special effects, etc.

Raytracing in a Nutshell

So far, we’ve done something like:

for each object
send it through a lot of transformations to
find out what pixels it ends up at

Raytracing takes the opposite approach:

for each pixel
figure out what objects should be visible
at this pixel

Raytracing in a Nutshell

Assume we know the camera position
Assume we have chosen an “image plane” where
our pixels are located
We’ll “trace a ray” from our camera through each
pixel on the image plane, and see what it hits
Really, we’re modeling all the light that would
have hit our eye coming through each of these
pixels

5

Intersecting Rays
Let’s represent rays like this:

struct Ray {
point origin;
vector direction;

}

Assume we have a function:

bool intersect(
float& distance, ray R, Object O

);

Returns true if this ray hits this object
Sets “distance” to the distance from the ray origin at
which the intersection occurs

o d

o d

distance

Raytracing: Take One
for each pixel in the image plane {

Object closestObject=NULL;
float closestT=INFINITY;
Ray r;
r.origin = eye;
r.direction = pixel – eye;

for each object in our world {
float t;
if (intersect(t,r,object) == false) continue;
if (t > closestT) continue;
closestT = t;
closestObject = object;

}

if (closestObject) set this pixel to closestObject.color;
}

What basic OpenGL feature does this approach lack?

Raytracing: Take Two

for each pixel in the image plane {

…find the closest object…

if (closestObject) {
// Compute color just like we did in GL:
I = I(amb) + I(diff) + I(spec);

}
}

What other information do I need to take this
approach?

What feature would OpenGL have to support to make it
basically equivalent to this approach?

Something is still missing…

What important features does “take two” lack?
Shadows
Reflection
Transparency
Refraction

We can solve all these problems with one elegant
solution: recursive ray tracing

Recursive Shadows
Instead of just computing the lighting equation after
we find the closest intersection, cast a new ray
toward each light source
If this ray hits any other objects before it hits the
light source, our object is shadowed from this light

Reflection and Refraction
If a ray hits a transparent, reflective, or refractive object, cast
additional rays to find additional components of the pixel color…
In other words, our lighting equation becomes:

I = I(amb) + I(diff) + I(spec) +
kreflect*I(refl) + krefract*I(refr)

kreflect is the “mirror-ness” of the object
Krefract is the “transparency” of the object
I(refl) and I(refr) are the results of running our whole ray tracing
operation on new rays

6

Computing reflected rays
Given an incoming ray R and an intersection point,
how would you compute the reflected ray direction?

What information about the object do you need?
What do you know about the direction of the
reflected ray?
Where in the CS148 lecture slides should I go to
find a figure to steal about this topic (i.e. where
have we seen this before)?

n

r
s’

m

e e

-m

r = s’ – 2 (s’ • un) un

Computing refracted rays
Given an incoming ray R and an intersection point,
how would you compute the refracted ray direction?
Snell’s law: ηi sin θi = ηt sin θt

Not going to go through the math here, but it’s a
good exercise in vector manipulation…
For now, you should just see what data we need
about the intersected object to give us a new ray

cos θi n - i

i

n

θi

θr r = ?

cos θi n

How would you generate an
outgoing refracted ray for a
translucent quad like this one?

Computing Intersection Points
Ray representation re-visited:

r(t) = o + dt

For a “primary ray” (a ray coming from the camera):
o = camera position
d = (Ppix - Peye) / | Ppix – Peye |

An intersection function finds the t value – if any –
where a ray hits an object

In general, every type of object – polygonal meshes,
spheres, voxel grids, etc. – will have its own
intersection routine

Intersecting a Sphere
Implicit function for a sphere:

| p – c | = R

c: center of sphere
p: any point on the sphere
R: radius

To find where a ray hits a sphere, plug our ray into the
implicit function for a sphere:

p = o + dt

| o + dt - c | = R
| o + dt - c |2 = R2

| (o - c) + dt |2 = R2

| o - c |2 + 2 * | o - c | * dt + |d|2t2 = R2

Intersecting a Sphere
| o - c |2 + 2 * | o - c | * dt + |d|2t2 = R2

This looks like a quadratic equation:

At2 + Bt + C = 0
A = | d |2

B = 2 * | o - c | * dt
C = | o - c |2 - R2

Solutions are the intersections between our ray and our
sphere:

(-B ± √(B2 – 4AC)) / 2A

What does it mean for our raytracer if (B2 – 4AC) is:
Negative
Positive
Zero

Speeding up Raytracing

Raytracing can take hours or days per frame
Most of the time is spent in computing
intersections

How could we speed up the intersection tests
required for each ray?

Raytracing also parallelizes really well…

How would you design a raytracer to run on
many computers?

What if you had more computers than pixels?

7

Raytracing at home

POV-Ray is a powerful, free raytracer used by
everyone from designers who want pretty virtual
prototypes to movie studios

http://www.povray.org

Outline for today

Hidden Surface Elimination
Video Break
Raytracing
Terrain Generation

Terrain Generation
(many images taken from robot-frog.com)

Many games use large outdoor scenes
It can be very tedious to manually model hills,
mountains, oceans, etc.
Often games want the terrain to be a little
different every time you play, or want “infinite
terrain”
Enter Artifical Terrain Generation…

Representing Terrain

Most terrain can be represented as a 2D “height
map”
Each element in a 2D grid stores the height of the
terrain at that position
Can build OpenGL quads from this data

What types of terrain features can’t be
represented using height maps?

Terrain Generation: Take One
Generate a 2D image in your favorite image
editor
Pixel intensities correspond to terrain height

What advantages does this have over modeling
the terrain using 3D polygons?

What important terrain-generator properties
does our “take one” system lack?

Terrain Generation: Take Two
Generate a random 2D height map

for all pixels in my image
height = rand();

What’s wrong with this approach?

8

Terrain Generation: Hill Algorithm
initialize my height field to 0’s;
for(i=1:magic_number)

pick a random point phill on or near the terrain;
pick a random radius r;
“raise a hill” using that point and that radius;

How do we raise a hill?

for each pixel p
if (distance(p,phill) < r)

p.z += r2 – ((p.x – phill.x)2 - (p.y – phill.y)2)

Terrain Generation: Hill Algorithm
This approach starts to give pretty nice height
fields…
Common postprocessing steps:

Normalize to get everything in a reasonable height
range
Flatten pixels with lower height, to create valleys
and plains

Terrain Generation: Rendering
How can we compute vertex normals?
How can we assign texture coordinates?
How can we optimize rendering of large terrain
models?
How can we generate “infinite terrain”?

Advanced Terrain Generation
Level-of-detail (LOD) (important CG buzzword)

What does level-of-detail mean?

Incorporating real data

Better texturing and rendering

Next Time

Advanced topics:
What haven’t we learned about GL?

