
1

Collision Detection
Shadows
Programmable shaders

CS148: Intro to CG
Instructor: Dan Morris
TA: Sean Walker
August 4, 2005

Review Quiz

What might I use a quadtree for?
Name two approaches OpenGL uses for 
hidden surface removal
What visual effects does recursive 
raytracing allow that non-recursive 
raytracing can’t produce?
What type of computation does a raytracer
spend most of its time doing?
What is Dan’s recommended way of 
studying for CS148 exams? 

Pre-lecture business

Get going on pp4

Submit exam questions by Sunday

Outline For Today

Collision Detection
Shadows
Programmable Shaders

Collision Detection
Many games and simulations spend most of their CPU 
time doing collision detection: does object A intersect 
object B?

When I might want to detect collisions in games?

Let’s take our first attempt at collision detection… assume 
we can test whether two triangles intersect:

bool findCollision() {
for(every object o1)

for(every triangle t1 in o1)
for(every object o2 != o1)

for(every triangle t2 in o2)
if(t1 intersects t2) return true;

}

What’s wrong with this approach?

Accelerated Collision Detection
What have we seen before that’s like this problem?

Octrees are very powerful for collision detection…

bool findCollision() {
for(every object o1)
for(every octree cell c1 that o1 lives in)
for(every object o2 in c1)
for(every triangle t1 in o1)

for(every triangle t2 in o2)
if(t1 intersects t2) return true;

}

What has this improved?



2

Bounding Volumes
Very popular trick: store a bounding volume for each object:

BV: a large, simple shape that approximates the object’s shape
Choose BV’s for whom intersections are computationally easy

Test collisions with bounding volumes before or instead of 
individual triangles

Can combine with octrees to really speed up collision detection:

bool findCollision() {
for(every object o1)

for(every octree cell c1 that o1 lives in)
for(every object o2 in c1)

if(o1’s BV intersects o2’s BV)
if(I don’t care about precise collision detection)

return true;
for(every triangle t1 in o1)

for(every triangle t2 in o2)
if(t1 intersects t2) return true;

}

Bounding Volumes
Popular bounding volume shapes:

Axis-aligned bounding box
Oriented bounding box
Sphere

AABB Sphere OBB

What are the tradeoffs between 
AABB and OBB?

Fixing other CD problems
realtimerendering.com has a great table of free 
intersection code…

Shows you how to find intersections between 
rays/planes/sphere/cylinders/boxes/triangles/frustums
/tetc.

Let’s revisit one of the other problems with our “take 
one” collision-detection approach:

If we represent these objects as a sphere and a 
box, how can we detect this collision even if they 
pass through each other in one frame?

Collision Detection Summary

Collision detection is a big CPU drain 
in games
Hierarchical/spatial data structures 
are basically a requirement for CD in 
large worlds
Figuring out how precise your CD 
needs to be can help you optimize

If my million-polygon spaceship can be a 
cone, I can do my CD much more quickly

Outline For Today

Collision Detection
Shadows
Programmable Shaders

Why do we care about shadows?

Realism
Depth cues



3

Shadowing algorithms

Planar shadows
Very fast but can only cast 
shadows on planar objects

Shadow maps
Flexible but don’t produce great 
shadows

Shadow volumes
Best-quality shadows but very 
expensive

Planar Shadows

Objects can cast shadows onto 
planes (and only planes)
No occlusion testing; every 
shadowcaster casts a shadow on 
every shadowed plane
Sounds lame… why might this be 
useful?

Planar Shadows

The shadow is just rendered as another 
polygon, which happens to be a 
perspective-projected version of the 
shadow-caster

Where is the center of projection for 
this particular perspective projection?

Planar Shadows: Implementation
The big picture:

Render our world, including the floor and the 
shadowcaster as it would normally appear (no 
shadows)
Render the shadowcaster again in black, with a new 
modelview matrix that transforms it onto the floor

Let’s look at the special (but common) case where 
we want to cast shadows onto the plane y=0

Also assume the light is above the plane

How do we build this transformation?

I’ll give you the first step: move the 
origin to the light source

translate(-lx,-ly,-lz); 

What would happen if we 
rendered our polygon with only 
this translation?

Getting some perspective…

To get the perspective aspect of my 
transformation, I want z and x to get 
bigger as y gets more negative
What should my transformation 
matrix look like?



4

w saves the day again…

What would happen if I translated, then 
applied this transformation, then rendered?
What do I need to do to fix this?

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 00/10
0100
0010
0001

y

Almost there…

Our steps so far:
Translate the origin to the light
Apply our perspective matrix
Translate the origin back

What should the y coordinate of my shadow’s 
vertices be?
How can we do that in OpenGL?

And we have shadows…
Projecting shadows onto y=0:

Translate the origin to the light
Apply our perspective matrix
Translate the origin back
Scale y to 0
Set the current color to black
Render our polygon

In our GL code, what order should the 
transformations appear in?

Planar Shadows in GL [shadows.cpp]
// This will be our projection matrix
float shadow_matrix[16];

for (i=0;i<15;i++) m[i]=0.0;
m[0] = m[5] =m[10] = 1.0;
m[7] = -1.0/lightpos.y;

glBegin(GL_POLYGON);
// draw the polygon normally

glEnd();

glPushMatrix();
glScalef(1,0,1);
glTranslatef(lightpos.x,lightpos.y,lightpos.z);
glMultMatrixf(shadow_matrix); 
glTranslate(-lightpos.x,-lightpos.y,-lightpos.z); 
glColor3fv(shadow_color);
glBegin(GL_POLYGON);
// draw the polygon again

glEnd();
glPopMatrix();

Shadow maps

Objects that are not visible to 
the light are shadowed

Does OpenGL give us a way 
to detect what objects are 
visible from a particular 
point in the scene?

Shadow maps: the big picture
Render the whole world from the position of the light 
source, but don’t display it to the user
The z-buffer is now a “shadow map”; copy it to a texture
Render the world using the normal camera
For each fragment at (x,y,z) that we want to render, 
transform it to the light’s coordinate system (call it 
(x’,y’,z’) )
Compare z’ to z = shadow_map[x’,y’]
What do I do if z’ < z? 
What do I do if z’ > z?



5

Shadow maps in OpenGL (overview)

The big steps we skipped past there were:
Transforming pixels into the light’s coordinate frame
Coloring pixels depending on whether they’re visible to 
the light

If we can’t do this in hardware, this isn’t going to be 
helpful…
Can use OpenGL’s texture-generation functionality 
to generate texture coordinates for our objects on-
the-fly

Texture coordinates can be set to the x,y,z offset of 
each vertex from the camera
But we want to know how far each vertex is from the 
light…
Can use the “texture transform matrix” to transform 
those values from eye space to light space

Can use the “ARB_shadow” extension to 
automatically generate alpha or color values based 
on the results of the “shadow test”

Dan’s lectures end here…

This is as far as we got in class, 
so everything after this falls into 
the “not on the test” category.

Shadow maps: pros and cons

Pros:
can shadow any object on any other 
object
uses lots of hardware acceleration 
so you do very little computation

Cons:
requires one additional rendering 
pass for each light
can make ugly shadows, since the 
pixels in the two buffers don’t 
necessarily line up exactly

State-of-the-art: shadow volumes

Generate a whole polygon model 
that represents the volume of 
space shadowed by each object
Test whether each object is inside 
(shadowed) or outside (lit) that 
volume

shadowcaster

A raytracing perspective

Create an integer counter an initialize it to 0
Cast a ray into the scene
If we cross a front-face of a shadow volume, 
increment the counter
If we cross a back-face of a shadow volume, 
decrement the counter
When I hit an object, how do I know 
whether it’s in shadow?

shadowcaster

010

Aisde: The Stencil Buffer
The stencil buffer is a framebuffer-sized array of integers that 
you can manipulate
Basically let’s you allow rendering to an arbitrary portion of 
the screen… it’s a framebuffer-sized mask
Can increment, decrement, or set a pixel’s value in the stencil 
buffer every time a pixel is rendered at that location
Can throw out pixels if they fail some test, e.g. “this pixel is 
!= 12 in the stencil buffer” or “this pixel > 33 in the stencil 
buffer”

The “stencil test” happens right after the depth test for each 
fragment

Often used for special effects
Dissolving between two frames
Arbitrary viewports / reflections



6

Shadow Volumes in GL
The stencil buffer will be the counter we had in our raytracing
example:

Render the front faces of the shadow volumes (not the objects) 
and increment the stencil buffer at each rendered fragment
Render the back faces of the shadow volumes (not the objects) 
and decrement the stencil buffer at each rendered fragment

Turn on the stencil test so that pixels with a 0 in the stencil 
buffer will not be rendered
Draw a big dark transparent quad over the entire screen; it 
will only be drawn on top of the shadowed pixels!

What were the expensive parts here?
When do I have to re-compute a lot of stuff?

Outline For Today

Collision Detection
Shadows
Programmable Shaders

The OpenGL “fixed-function” pipeline

vertex
data

display lists
vertex buffers

evaluators per-vertex
operations

rasterization

per-fragment
operations

framebuffer

texture
memory

pixel
data

clipping primitive
type

Shader evolution

In the beginning, there was transformation, lighting, 
texturing, and rasterization

Graphics cards had very dedicated circuits… a 
modelview-multiply circuit, a texture-fetch circuit, etc.

As cards got faster, folks wanted more control over 
the pipeline…

Multiple textures, normal mapping, texture and color 
transformations, more complex materials, stencil tests, 
etc.

At some point it became easier for hardware 
vendors to implement the pipeline with 
programmable mini-cpu’s
Then at some point they realized “hey, why not let 
the users program these mini-cpu’s at run-time”

Enter shaders…

Vertex shaders:
Small programs you can download to the 
graphics card
You can tell OpenGL: “instead of doing the 
regular T&L, run my program on every vertex”
Have nothing to do with shading

Pixel shaders:
Small programs you can download to the 
graphics card
You can tell OpenGL: “instead of doing the 
regular fragment ops, run my program on every 
fragment”

You now have a programmable OpenGL pipeline

Why do I want a programmable pipe?

Effects we’ve already seen, e.g. 
bump mapping and environment 
mapping become much easier
Complex new effects are possible



7

Shader programming languages

Originally you had to write shaders in GPU assembly
What does GPU stand for?

Even worse… different vendors had different 
assembly

So the good OpenGL folks defined a standard 
assembly language
Only so did the good DirectX folks
And they were both still assembly…

Enter high-level shader languages…
You can now program your shaders using a language 
that looks just like C, and your driver will turn it into 
GPU assembly for you
The bad news is that there are still different languages 
for OpenGL and DirectX, and different languages for 
different vendors, but it’s getting there…

What does a shader look like?

A sample of Nvidia’s Cg shader language:

void simpleTransform(
float4 objectPosition : POSITION,
float4 color : COLOR,
float4 decalCoord : TEXCOORD0,
float4 lightMapCoord : TEXCOORD1,
out float4 clipPosition : POSITION,
out float4 oColor : COLOR,
out float4 oDecalCoord : TEXCOORD0,
out float4 oLightMapCoord : TEXCOORD1,
uniform float brightness,
uniform float4x4 modelViewProjection)

{
clipPosition = mul(modelViewProjection, objectPosition);
oColor = brightness * color;
oDecalCoord = decalCoord;
oLightMapCoord = lightMapCoord;

}

Is this a vertex shader or a pixel shader?

What does a shader look like?

A sample of Nvidia’s Cg shader language:

float4 brightLightMapDecal(
float4 color : COLOR,
float4 decalCoord : TEXCOORD0,
float4 lightMapCoord : TEXCOORD1,
uniform sampler2D decal,
uniform sampler2D lightMap) : COLOR
{

float4 d = tex2Dproj(decal, decalCoord);
float4 lm = tex2Dproj(lightMap, lightMapCoord);
return 2.0 * color * d * lm;

}

Is this a vertex shader or a pixel 
shader?

GPGPU

A hot area in graphics research right now: 
GPGPU == general-purpose GPU programming
With programmable shaders, everyone has a 
limited but massively parallel computer on their 
desktop
Harnessing this for physics computation in 
games and for scientific research is a hot topic 
(which sadly we don’t have time to cover in 
CS148)

Check out http://www.gpgpu.org


