
Dan’s Morris’s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999) 
 
This is intended to be a detailed by fairly-low-math explanation of Stam’s “Stable Fluids”, one of 
the key papers in a recent series of advances in simulating fluids for computer graphics. 
 
 
Navier-Stokes Overview 
 
The goal of this whole field is to simulate realistic fluid motion; this paper is represents one step 
forward in that direction.  So let’s first talk about the basic Navier-Stokes equations, which are 
an accepted physical description of the things that affect fluid motion.  These equations represent 
“the truth”, which 10 years of research have attempted to translate into algorithms.  These 
formulations are taken from Stam’s paper, although there are about one zillion different 
formulations of the Navier-Stokes equations. 
 

 
 
These equations describe the behavior of fluid at one point in a fluid volume.  u is the vector-
valued velocity at that point, which is what we’re trying to solve for over and over.  t is time.  ρ 
is density, p is pressure, υ is viscosity, and f is external force; these four values are basically 
assumed to be handed down from space, i.e. whoever is using this algorithm sets these values to 
model a particular fluid or a particular environment.  Also, for right now, we assume a constant 
density, which is reasonable for an incompressible fluid like water. 
 
• Equation (1) says that at any point, the velocity in and out of the point must sum to zero.  For 

a constant density, this is the same as saying that mass is conserved, which seems important, 
since we’re not simulating nuclear explosions or magic, so mass can’t appear or disappear. 

 
• Equation (2) lists the factors that govern the movement (partial derivative) of velocity: 
 

o The first term says that velocity moves along itself, and it moves faster at regions of 
high velocity.  This is a known property of fluids; it’s the reason that swirling regions 
of smoke or water continue to swirl.  Because u appears twice in this term, this whole 
equation is non-linear.  This is the advection term. 

 
o The second term says that velocity moves along a pressure gradient.  This term will 

actually disappear later on because it creates divergence (velocity would always flow 
out of high-pressure cells), which is illegal in our constant-density universe, so Stam 
in fact omits this term entirely in his presentations. 

 
o The third term says that velocity tends to diffuse along the velocity gradient.  The 

more velocity diffuses, the smoother the velocity field gets.  How would you describe 
a fluid with a very smooth velocity field?  It would be hella viscous.  Hence v is 
viscosity.  This term is the diffusion term. 



 
o The last term allows external forces.  Since we assume a constant density, we call this 

term “force”.  The left side of this equation is basically acceleration (derivative of 
velocity), and we know that all equations in physics have to look basically like f=ma, 
which in this case works because m (density in our case) is assumed to be constant. 

 
Now for completeness, I’m going to bring in an equation that’s not shown explicitly in the Stam 
paper.  Very often density is not constant (e.g. in any smoke simulation), and we want density to 
move around too.  There is a new equation that we add to our system to simulate density 
movement, and it looks so much like equation (2) that I won’t really even explain it.  Stam adds 
this equation in his presentations, and basically any implementation of this system uses this 
equation. 
 

 
(3) 

 
 

 
Using what we’ve already discussed, this equation says that (a) density moves along the velocity 
field, (b) density tends to diffuse according to some constant κ, and (c) the user can add or 
remove density anywhere he wants (S). 
 
 
Solving Navier-Stokes 
 
Okay, now we have useful equations that describe how fluids behave.  Now it’s time to write my 
fluid simulation code… 
 
void main { 
    float time=0.0; 
    while(1) { 
        // oh shit… I can’t paste the equations into my code… 
        time += delta; 
    } 
} 
 
Now we need a way to actually solve these equations, i.e. if the velocity and density look like 
some particular set of values at time t, what will they look like at the next timestep?  This is the 
one-line summary of the entire field of computational fluid dynamics. 
 
 
• In 1996, Foster and Metaxas started the modern wave of research in fluid simulation for 

graphics.  They showed everyone the Navier-Stokes equations, and presented their approach 
to solving them: 

 
o They discretized the fluid volume into cubes, i.e. they use an Eulerian (fixed) grid for 

their simulation.  Particles don’t move around… there is a fixed grid, and the velocity 



of the fluid at each grid cell changes over time.  This seems standard now, but if you 
asked me to write a fluid simulation before reading any of this literature, I would have 
headed straight for the particles and written a Lagrangian simulation.  So this is a big 
deal. 

 
o They use explicit timestepping; i.e. at each timestep, they grab density and velocity 

from each cell and move it along the velocity field to neighboring cells. 
 

o Sometimes this violates incompressibility, so to enforce incompressibility, they 
iteratively move tiny bits of mass around neighboring cells until everyone has the 
same mass that he started with.  This is a “relaxation” technique. 

 
The Foster and Metaxas system works nicely, but the explicit timestepping scheme leads to 
instability (long timesteps make the velocity field go crazy) and prevents interactivity, and the 
relaxation technique is slow and somewhat inaccurate. 
 
 
Stable Fluids 
 
Enter Jos Stam, 1999.  Stam takes the F/M approach and moves it forward tremendously, 
presenting a semi-Lagrangian/implicit method for solving the Navier-Stokes equations that is 
unconditionally stable for any timestep.   In this paper he focuses on moving velocity around (not 
density), but I’ll discuss density at the end of the summary, because it’s much simpler than 
moving velocity around, and he covers it in other places online. 
 
• He starts with a very clean summary of the N-S equations, which I’ve paraphrased above 

 
• Now he presents a magic tidbit of math that he’ll use later: the Helmholtz-Hodge 

decomposition.  This says that every vector field can be decomposed into a gradient field (of 
a scalar function) and a divergence-free vector field.  I’ll treat this math as a black box.  As 
you might expect, he’ll use this property to make illegal divergence disappear, instead of the 
relaxation scheme used by Foster and Metaxas. 

 
 
• Next he presents a very clear set of steps that one needs to do to solve the N-S equations 

(which, as a reminder, means “update the velocity field”).  The steps here should remind you 
of the individual terms in the Navier-Stokes equations.  Note that we’ll re-use most of these 
steps when we talk about moving density around, but for now we’re talking about velocity. 

 
o Add external force: just add Δt*f(x,t) to each cell x where f is an external force 

 
o Advect: move the velocity field along itself 

 Foster and Metaxas did this using explicit simulation… if I’m a grid cell and 
my neighbor has some velocity that points toward me, take some of his 
velocity.  Do this for all of my neighbors. 



 As I mentioned earlier, this makes the velocity field freak out for large 
timesteps.  So Stam’s biggest contribution is an unconditionally-stable, semi-
implicit advection scheme.  He uses the “method of characteristics”, which 
basically says that if I want to know the velocity at point x, I can trace a line 
backwards along the current velocity field at point x to see what my new 
velocity should be. 

 More specifically, we imagine we have a particle sitting at point x (the center 
of a grid cell), and whatever the velocity u is at that cell, we move our 
imaginary particle by -uΔt.  I.e., it walks backwards along the velocity field.  
It won’t necessarily land in the middle of a grid cell, so wherever it lands, we 
grab the nearest velocity values and interpolate.  This is the new velocity at 
cell x.  Very stable. 

 Because we sort of used a particle, we call this a semi-Lagrangian scheme.  
Stam’s figure 2 illustrates this process… note that the particle is created at 
grid cell x, and moved backwards along the velocity field to get the 
corresponding value at “Δt seconds ago”. 

 

 
 

o Diffuse: let the velocity field spread out to represent viscosity 
 You could just diffuse any scalar field by taking each pair of neighbors and 

moving “stuff” (in this case velocity) from the higher-valued neighbor to the 
lower-valued neighbor.  This would be a simple explicit scheme.  
Unfortunately it’s really sensitive to grid size and timestep, so it’s really 
unstable. 

 What you really want is to look at the whole grid at once and find the new 
velocity field that best represents diffusion according to our diffusion 
constant.  So Stam uses an implicit technique, i.e. he asks the question: what 
velocity field would give us the current velocity field if we ran the diffusion 
process backwards? 

 This is a classic implicit system, and it leads to a linear equation, which they 
plug into a black-box linear system solver (choose your favorite from the 
web), which gives them a new, nicely-diffused velocity field. 

 
o Project: get rid of all the divergence 

 Remember we want to enforce conservation of mass, but the previous steps 
didn’t necessarily do this; we could have created or lost a little mass at 
individual cells.  This is where Stam uses the magic Helmholtz 
decomposition, which basically finds the best divergence-free field to match a 
vector field, and lets you throw out the leftover junk. 



 This decomposition yields a Poisson equation (a second-order PDE), which 
they also feed to their favorite black-box solver (FISHPAK) to get a 
divergence-free field 

 
• These steps let you update the velocity field given the previous velocity field.  Now what 

about density?  The density equation (3) is virtually identical to its velocity-oriented cousin 
(2).  The first term depends on velocity, which we have now computed.  So we use nearly the 
same steps for moving density around: 

 
 Add source: if the user wants more density at some places, do it 

 
 Convect: move the density field along the velocity field 

• The same semi-Lagrangian method works great here 
 

 Diffuse: spread the density out according to a user-defined diffusion constant 
• The same implicit method works great here 

 
 No need to project, since our grid of density is a scalar field, not a vector field 

 
Now, we can put all this together to fill in our pseudocode: 
 
void main { 
 
    // velocity field (vectors) 
    float v[SIZE][SIZE][3]; 
    // density field (scalars) 
    Float d[SIZE][SIZE]; 
    float time=0.0; 
 
    while(1) { 
 
        // solve for velocity 
        addExternalForces(v); 
        advect(v);               // uses particle-tracing technique 
        diffuse(v);              // uses linear system solver 
        project(v);              // uses linear system solver 
 
        // solve for density 
        addExternalSources(d); 
        convect(d);              // uses particle-tracing technique 
        diffuse(d);              // uses linear system solver 
 
        // do whatever I want to do with my fluids, e.g. rendering them... 
 
        time += delta; 
    } 
} 
 
• These are the main contributions of this paper, although he also notes that if you assume a 

“wrap-around” boundary condition (practical only for texture synthesis), you can transform 
the whole problem into frequency space and use a pretty – albeit slower – FFT-based solver 



 
A really clear 2D java implementation of this paper is available at: 
http://www.multires.caltech.edu/teaching/demos/ 
 


