
 Page 1 of 14

TG2: A software package for behavioral neurophysiology and
closed-loop spike train decoding

Daniel Morris

Stanford University
Department of Computer Science

dmorris@cs.stanford.edu

Abstract

Previous studies have demonstrated the feasibility of reconstructing intended arm movements from neural
spike trains in real-time. Currently, research groups develop specialized environments for studying
closed-loop control, and these environments typically depend on specialized hardware, multiple
computers, and multiple software packages. This complexity limits the transfer of neural prosthetic work
to a clinical environment and the rapid implementation of new decoding algorithms or paradigms in
animal studies. In order to address these issues, we have implemented TG2, a Windows-based software
package that integrates flexible behavioral control scripting with real-time neural decoding. A novel
state-machine-based representation of experiments allows behavioral tasks to be developed graphically.
Device-independent hardware abstractions allow experiments to be rapidly transferred among a variety of
neural data acquisition systems, kinematic input devices, and neural decoding algorithms. An integrated
simulation package allows offline development and debugging of real-time decoding algorithms.
Although TG2 is designed for neurophysiology, it makes use of novel features that are applicable to a
wide variety of behavioral experiments. We discuss the design and implementation of TG2, the novel
software architecture and operator interface techniques that separate it from related software packages,
and its initial use in both clinical and animal studies.

1. Introduction

An estimated 11,000 new patients each year suffer from partial or total paralysis as a result of spinal cord
injury alone [1]. Consequently, the restoration of movement and/or communication in motor-impaired
patients remains a major goal in neuroscience research. Although progress continues in the regeneration
of damaged spinal cord tissue [2], several groups have recently demonstrated the potential of Brain-
Computer Interface (BCI) technology as an alternative approach. Neural signals from motor cortex
([3],[4],[5]), parietal cortex [3], and other CNS areas have been successfully decoded in real time to allow
direct cortical control of computer cursors or robotic actuators, bypassing the spinal cord entirely. These
studies have spanned several species and numerous neural recording technologies.

Despite these successes, the engineering of real-time neural decoding systems remains a challenge that is
often solved by lab-specific and even experiment-specific decoding systems. There are several systems
available for stimulus generation and behavioral control (e.g. National Instruments LabView,
PsychToolbox [6], and Reflective Computing’s Tempo), but none of these systems provide integrated
communication with the variety of neural data acquisition systems or kinematic input devices that are
widely used in motor neurophysiology and/or real-time decoding experiments. As a result, research
groups typically invest a significant amount of time building experimental platforms from several
software packages, and it is often necessary to use several computers to manage the real-time decoding
process.

This complexity limits both the rate at which experiments can be conducted and the ease with which
decoding algorithms can be transferred among experiments or into a clinical environment. To address
these issues, we have developed TG2, a software package that combines several aspects of real-time

 Page 2 of 14

decoding – in addition to standard behavioral control and stimulus presentation – into a single software
package. Several novel features separate TG2 from other packages currently in use for closed-loop
neurophysiology studies; some of these features are summarized here:
Hardware Abstraction

TG2 provides device-independent abstractions for neural data and kinematic data that allow experiments
to transfer easily among different environments. The experimental logic, stimulus presentation, and real-
time analysis operate on device-independent coordinates and a device-independent representation of cells
and spike trains. These device-independent representations are logged to TG2’s data files (in addition to
the raw input received from various devices), so offline analyses can also be transferred rapidly among a
variety of experiments.

For example, for an ongoing experiment in which a primate subject is presented with a moving cursor, we
are able to rapidly toggle between several sources of position information, including a joystick, a wrist-
position tracker, and a neural decoding filter. Similarly, we are able to transfer the same experiment
scripts among several sources of real-time spike data, including three neural recording systems and a
simulation environment, without modifying our experiment script or offline analysis scripts.
Furthermore, rather than providing support for kinematic data acquisition from a small set of specific
devices, TG2 provides communication with several general-purpose device interfaces, which are already
implemented by numerous physical input devices. Examples include Microsoft’s DirectInput interface
and the WinTab interface for absolute pointing devices.

Graphical Programming

TG2 also allows users to define behavioral control scripts graphically, which greatly simplifies the
process of creating experiments and allows researchers to develop complex experimental structures with
limited programming time. This has the added benefit of allowing most experimental features to be
optimized within the software package, so users do not have to be concerned about the efficient
implementation of complex features or experimental logic.

External Interfaces

For those users that require features that are not available from the graphical interface, TG2 can
communicate in real-time with Matlab or with custom C/C++ libraries, locally or over a LAN. Users can
thus provide an interface between TG2 and custom experimental logic or custom hardware. This is also
the mechanism by which users can develop custom decoding algorithms.

Integrated Simulation Environments

The debugging and testing of real-time decoding systems has also traditionally presented a challenge to
research groups in this field. Real-time execution presents unique challenges associated with timing and
performance, which reduces the effectiveness of offline debugging. With this in mind, TG2 was
developed in parallel with two simulation environments that assist in the debugging of real-time
algorithms and experiments. One of these environments “plays back” the spike train and kinematic
stream collected from a previously recorded experiment, and the other uses a PC to generate spike trains
based on input from a mouse or joystick.

Simulation is particularly essential for clinical experiments, when debugging time is limited or
unavailable in the experimental environment.

 Page 3 of 14

Integrated Decoding Algorithms

In addition to allowing users to develop custom decoding algorithms, TG2 includes integrated, optimized
implementations of several neural decoding algorithms that have been successfully employed by various
research groups. Specifically, TG2 includes a linear filter [7], a Kalman filter [8], a spike rate integrator
[9], and a maximum-likelihood estimator [10]. These integrated algorithms allow researchers to rapidly
conduct experiments that don’t require custom decoding algorithms; for example to explore user
interfaces for BCI systems, training techniques for closed-loop control, or real-time control of novel
actuators.

The remainder of this paper will describe the implementation of the above features and TG2’s initial use
in human and animal studies.

2. Methods

TG2 and supporting packages were developed in C++ (Microsoft Visual C++ 6.0). TG2 was tested on
several desktop and laptop computers running Windows 2000 and Windows XP.

2.1 TG2 Description and Programming Model

TG2’s core functionality provides behavioral task scripting and graphical display on two monitors (one
for the subject and one for the operator). FIGURE 1 shows a screenshot of TG2; the task display area is a
windowed version of the fullscreen display that is presented to the subject.

TG2’s programming model is structured around four fundamental entities: “targets”, “epochs”, “events”,
and “conditions”.

A “target” is a two-dimensional position and – optionally – its representation on one or two displays.
FIGURE 1 shows several example target representations, including polygonal shapes, images, text, and
“meters”. Targets need not be displayed on the screen; a target’s two-dimensional position can be treated
as a two-point vector for computation, rather than the location of a visual object. Each target’s position
can be mapped to one of several input devices (see section 2.2), and a target can perform several
transformations on the input it receives from the corresponding device. Available transformations include
(but are not limited to) shifting, scaling, integration, differentiation, and low-pass filtering. One of the
available “input devices” to which a target can be mapped is a pair of variables, or the position of another
target. In this manner, targets – visible or invisible – can effectively be used as computational elements in
a two-point data stream.

 Page 4 of 14

An “epoch” is a period of time in which TG2 is operating in a particular state; it is effectively one state of
a user-defined finite-state machine. A user-defined set of “events” is executed at the beginning of each
epoch, and an epoch ends when one or more of several user-defined “conditions” becomes true. Each
condition in an epoch is associated with another epoch; when a particular condition becomes true, TG2
transitions to the specified epoch.

Example events include the manipulation of target visibility or position, the manipulation of digital output
ports, the manipulation of internal variables (using arbitrary arithmetic expressions), the control of movie
playback or target animation, sound playback, and speech synthesis.

Example conditions include timeouts, intersections among targets, value changes on digital input pins,
input device events (e.g. button-presses), and arbitrary boolean expressions in terms of internal variables.
Conditions can be “AND-ed” together to form more complex boolean expressions, and events can be
executed either unconditionally or only if certain conditions are true when an epoch begins. Most events
and conditions can also be parameterized in terms of internal variables that the user can control
throughout an experiment. In this manner, arbitrarily complex experimental structures, making full use of
optimized display features and complex hardware interaction features, can be built quickly from a
reasonably small number of available events and conditions, without requiring low-level programming.

All epochs, events, conditions, and targets can be copied and pasted to minimize repetitive definitions.
Additionally, an “asynchronous” list of conditions is constantly evaluated during any epoch. This allows
users to define a single condition that should cause a transition regardless of the current state; for
example, a trial might be aborted at any point if the subject releases an input device.

FIGURE 1: The main operator interface to TG2. The task area
shows several example targets; these targets are (optionally)
mirrored on the subject’s full-screen display.

 Page 5 of 14

FIGURE 2 contains a pseudocode representation of the state machine used to execute an experiment, and
FIGURE 3 shows the GUI used to edit the events and conditions associated with a particular epoch.

2.2 Input devices

Any target in TG2 can be mapped to an input device; the input from the device can optionally be
transformed according to the functions discussed in section 2.1. Note that in addition to the functions
described above, input device data can be transformed through arbitrary functions using TG2’s arithmetic
expression parser.

Since physical input devices tend to vary significantly across experiments and across research groups, the
input device formats we chose to support in TG2 are intended to encapsulate a wide variety of possible
physical input devices. Only one of the available input sources uses a manufacturer-specific API
(SensAble Inc.’s “Ghost” API for Phantom haptic feedback devices [11]); each of the other TG2 “input
devices” actually represents a set of physical devices that present a particular interface. In this manner,
TG2 can be used with a variety of physical input devices, usually without requiring low-level
programming to interface with a new device.

For example, a target can be mapped to any device that supports Microsoft’s DirectInput standard. This
includes commercial game devices (joysticks, gamepads, etc.) and a variety of other devices. A target’s
position can be mapped to any combination of the numerous axes defined by the DirectInput standard.
This approach has been used to interface TG2 with several input devices, including several standard
desktop joysticks and several non-ferromagnetic joysticks designed for use in fMRI environments
(Resonance Technology).

Similarly, a target can be mapped to any device that supports the WinTab (LCS/Telegraphics) API, a
standard for interfacing with absolute pointing devices. We have used this approach to collect kinematic
training data for neural filtering algorithms, in humans (intraoperatively) and non-human primates (see
results in section 3).

The Windows system cursor serves as another general-purpose input device; a target can be mapped to a
transformed version of the Windows cursor position, which allows TG2 to interface with devices that do
not provide a low-level API but are able to manipulate the Windows cursor. We have used this approach
to interface with a touchscreen (Keytec, Inc.) and with the mouse, which we use for demonstrations and
pre-operative patient training.

curEpoch := 0;

while(1) {
 execute all events associated with epoch curEpoch;
 while(1) {
 for each condition associated with epoch curEpoch {
 if (the current condition is true) {
 if (the current condition ends the experiment) exit;
 curEpoch := (the epoch associated with the current condition);
 break;
 }
 }
 if (any conditions in this epoch became true) break;
 }
}

FIGURE 2: A pseudocode representation of TG2’s finite state machine.

 Page 6 of 14

An additional input stream, which we refer to as a “library input device”, allows the user to specify a
Windows Dynamic Link Library (DLL) that contains a custom interface to an unsupported data stream.
The TG2 package includes a header file that describes the interface TG2 expects to use to communicate
with library input devices. Users whose hardware does not conform to any supported standards can
implement the specified functions in a Windows DLL to connect TG2 to custom hardware. This interface
can also be used for writing custom decoding algorithms; TG2 treats library devices as an arbitrary source
of input data and can provide arbitrary experiment state information to the library. We have used this
approach to support a wrist-position-tracking device that transmits data to a digital input card; this device
is currently being used in primate physiology experiments.

In addition to the “input devices” supported by TG2 – which represent continuous streams of position or
numeric information – TG2 can also process discrete events from the keyboard or from digital input
sources. The “digital input” condition allows TG2 to transition among epochs based on the state of a
digital input port; native support is provided for the parallel port and any Advantech digital input card.
We have used this approach to connect TG2 to a hand-switch which our primate subjects are required to
hold during unilateral arm movement experiments.

2.3 Neural data processing

Several unique problems arise in real-time communication with neural data acquisition devices. There is
no standard format for network transmission or file storage of neural data (although the NeuroShare
project (http://neuroshare.org) represents progress toward a common interface for file access). This non-
uniformity requires researchers using multiple systems to modify online and offline analyses to deal with
the specific formats offered by particular manufacturers. Additionally, real-time aspects of decoding
software generally have to be debugged and tested on each system, to account for varying data formats
and timing characteristics.

In order to simplify online and offline analyses, TG2 has native support for communicating with several
data acquisition systems (including systems from Plexon, Cyberkinetics, and Alpha-Omega Engineering),
and allows the user to operate on a device-independent representation of neural data. The decoding
algorithms incorporated natively into TG2 (see section 2.4) are parameterized in terms of device-
independent “channels” and “units”, and the data logged to TG2’s data files is in a common format that’s
independent of the recording system (although system-specific configuration information is also logged to
disk).

An additional challenge in real-time decoding arises from the fact that training stimuli and kinematics are
generated/acquired on a clock that is independent of the clock used on the recording hardware. In order
to synchronize the data necessary for online reconstruction, researchers are typically required to generate
device-specific synchronization codes. TG2 handles this synchronization internally, by generating
periodic digital pulses on a digital output card (the parallel port and Advantech PCI digital output cards
are supported). The supported neural recording systems respond to digital codes with timestamped
network packets; TG2 extracts synchronization information from the timestamped responses. In this
manner, all neural data can be written to TG2’s data files or made accessible online with timestamps that
are synchronized to the behavioral stimulus clock, and users do not have to be concerned with
synchronization adjustments (device timestamps are also recorded to disk and made available online).

2.4 Network interface

In addition to providing access to TG2 state information via the “library device” interface, which requires
the development of a custom C/C++ library, TG2 also includes a TCP/IP server that allows clients to
access and manipulate TG2 state variables. Via this interface, clients can modify and access internal

 Page 7 of 14

numeric variables and target positions; clients can also start and stop experiments. To avoid
request/response latencies, clients can request that a particular set of target positions or variable values be
periodically streamed over the network.

Users can access the network server from arbitrary client software (the protocol and packet format are
made available to researchers using TG2). We have also provided a C++ library that manages the low-
level connection state and a Matlab wrapper for this library. Thus, users can access and manipulate
experimental state information in real-time from Matlab, either on the machine on which TG2 is running
or on a remote machine. This is the recommended approach for researchers developing complex
behavioral logic that is not available from the GUI or users developing custom neural decoding filters.
This approach allows users to utilize the graphics, data logging, and hardware interface features available
within TG2, while still developing completely custom behavioral tasks from a fully scripted language.

Additionally, we have developed several clients that use the TG2 network server for a variety of external
applications. These clients serve as both a demonstration of the network server’s functionality and a set
of extensions to the core TG2 functionality:

• TG2-3D: An increasing number of projects in motor physiology and neural prosthetics require three-

dimensional movements and three-dimensional stimulus display. Since the native display system in
TG2 represents only two-dimensional objects, we have developed an external client that receives state
information and target position information from TG2 and renders targets moving in three
dimensions. This can be run on the same computer as TG2 itself, but it offers the option of offloading
time-consuming rendering operations onto a separate computer.

FIGURE 5 shows an example of a set of targets displayed in TG2 and in the TG2-3D client. The client

FIGURE 3: An example of TG2’s GUI-based
programming environment. The interface for editing a
specific epoch is shown. Several events are defined
on the left; these events are executed when this epoch
begins. Several conditions are defined on the right;
when one of these conditions becomes true during an
experiment, TG2’s state machine jumps to the
corresponding epoch.

FIGURE 4: TG2’s user interface for managing linear and Kalman
decoding filters.

 Page 8 of 14

is shown here in windowed mode, but it can also be run in fullscreen mode and in page-flipped stereo
fullscreen mode, for presentation of stereo images to a subject.

• Desktop Control Client: As a demonstration of TG2’s application to brain-computer interfaces, and

as a tool for users interested in exploring user interface issues associated with BCI’s, we have also
developed a client that connects to TG2’s network server and synthesizes mouse and keyboard events
on a remote desktop based on filter predictions generated in TG2. The client can also synthesize
speech from the keystrokes supplied by TG2 (using the Microsoft Speech API). FIGURE 6 shows the
user interface for the “desktop control client”.

2.5 Integrated decoding algorithms

Many research applications do not require custom decoding algorithms. For example, users interested in
exploring user interface aspects of brain-computer interfaces or the control of novel robotic actuators
from neural signals may prefer to use optimized implementations of previously-developed decoding
algorithms.

With this in mind, TG2 includes native implementations of several neural decoding algorithms; each
allows graphical configuration of relevant parameters to adjust decoding performance for specific
experiments. The user configures these parameters in a filter-specific GUI, and specifies a target or set of
“targets” (see section 2.1) to use as a source of kinematic training data. Values computed by the filters
can be written to internal variables – accessible via events and conditions (see section 2.1) – or directly to
target positions.

The four algorithms that are included in TG2 are described briefly here, along with information
about their integration into TG2.

• An optimal linear filter, as presented in [7] and employed in closed-loop primate decoding in [4].

The parameters used to define the linear filter – specifically the filter length and bin size – can be
controlled from a GUI (see FIGURE 4). Additionally, the subset of active cells to be used for
decoding is controllable from the GUI. We have found that a practical approach to rapidly selecting a
meaningful subset of available cells is to sample only those cells that fall above a specified mean
firing rate over the training period. This method of selecting cells is available from the linear filter
GUI, which allows the user to avoid manually selecting individual cells.

A list of filters that have been generated is available in the GUI with descriptive information; a user
can rapidly toggle among available filters to evaluate their online performance. Filters are also saved
to disk and can be re-loaded in future sessions. Furthermore, training data can be collected in data
“blocks” of arbitrary length, and filters can be generated from arbitrary sets of data blocks. This
allows a user to experiment with various combinations of training data periods and to eliminate
periods of low-quality behavioral data from filter training.

The native linear filter allows regression onto two or three kinematic signals (typically x, y, and z
hand position). Results obtained using the native linear filter implementation in primate experiments
are presented in section 3.

• A Kalman filter, as presented in [8]. The parameters used to configure the Kalman filter are similar
to those used to configure the linear filter, so a common GUI (FIGURE 4) is used to control both
filters.

 Page 9 of 14

• A maximum-likelihood estimator (MLE), as presented in [10]. The MLE is trained to classify
discrete states based on the observed mean firing rates of each sampled unit around the behavioral
state. Training states are specified via “discrete classifier state” events. For example, in a multiple-
direction center-out task, the user would typically include a “discrete classifier state” event around the
time of directional stimulus.

The user can graphically configure the time window around a state that’s used for classification, along
with the subset of available cells that are used for classification. Estimators can be saved to disk and
recalled in later session.

• A “leaky” rate integrator, as presented in [9]. This is one of the simplest approaches to real-time

decoding; a continuous value is computed as a weighted sum of the firing rates of a number of cells.
The user can graphically adjust the subset of cells being sampled, the time constant for rate
integration, and the minimum and maximum output values.

2.6 Data logging

The abstraction of hardware devices is a major advantage of TG2’s architecture, particularly because data
files can be recorded in a device-independent format and can thus be transferred easily among offline
analysis programs.

TG2 (optionally) generates four data files per experiment; each is a simple fixed-format, tab-delimited
ASCII file that is parsed easily by offline analysis programs (e.g. Matlab or Excel). The time and date at
which an experiment was started is (optionally) automatically incorporated into the filename of each data
file; this greatly simplifies offline indexing and analysis.

Figure 6: The user interface for the TG2 “Desktop
Control Client”.

FIGURE 5: The TG2-3D client, displaying a 3d
rendering (top) of the 2d targets displayed in TG2’s
main console (bottom). Depth values are drawn
from TG2 state variables that the user associates
with each target.

 Page 10 of 14

• A kinematic data file includes device positions received from various input devices, both in native
device coordinates and in TG2’s device-independent coordinate system. Similarly, device-specific
timestamps are recorded to the data log along with device-independent “game time” values, to allow
simple synchronization among multiple devices.

• A spike data file includes a timestamp for each spike delivered by the neural recording hardware, both

as a device-independent TG2 “game time” and as a timestamp on the clock used by the recording
hardware.

• An “event” data file contains a representation of all events that were executed during an experiment,

and all state transitions (“conditions” that evaluated to “true”).

• A “filter information” data file contains a representation of all neural filters that were built, loaded, or

modified during an experiment.

Because these files are in a common format and use a common clock, it is easy for a user to re-construct
an entire experiment offline for analysis, debugging, or presentation.

Since it is not practical to capture all neural waveform information in TG2’s data files when they are
already being collected by the recording hardware, TG2 also includes a facility for sending behavioral
codes to neural recording hardware for offline synchronization. The user can use a “digital output event”
to write data to a particular hardware port, and TG2 will handle the low-level details of handshaking with
the recording hardware. Similarly, TG2 can be configured to send a kinematic (target position) stream to
a neural recording system as a series of digital codes. Thus users that prefer to use the neural recording
system’s data files online or offline can have access to the kinematic and behavioral events generated by
TG2 via the recording system.

2.7 Simulation

Real-time decoding algorithms and applications are difficult to design and test offline; problems related to
event timing and computational efficiency often arise only when algorithms are run in real-time.
Furthermore, for clinical applications, it is often helpful to be able to “practice” experimental paradigms
outside of the clinical environment. With this in mind, we have developed two simulation packages that
send neural data to TG2 in real-time over a network, emulating the behavior of a neural recording system
that is recording from a subject.

The first simulation package is called “SoftMCS” (for “software motor cortex simulator”); this software
takes input from a mouse or joystick and – via a set of user-defined functions that govern the firing rates
of each simulated cell – generates a spike train that reflects the position, velocity, and/or acceleration of
each input device axis. The user defines coefficients that transform device position into a firing rate for
each cell, and this rate is used to drive a Poisson process that generates the actual spiking pattern.
Spikes are sent over the network in a format that mimics the output of the Cerebus Data Acquisition
System (Cyberkinetics, Inc.). FIGURE 7 shows a screenshot of the SoftMCS program.

 Page 11 of 14

The second simulation package we have developed as a complement to TG2 reads previously-recorded
data files (either TG2 data files or data recorded in Plexon’s .plx file format) and streams them back to
TG2 in real-time, simulating the output of a Plexon or Alpha-Omega neural recording system. If
kinematic and neural information are available in the selected data files, an entire experiment can be
repeated offline, in simulated real-time.

3. Results

We will briefly discuss our experiences with the application of TG2 to various experimental environments
and various neural recording systems. Quantitative results will be presented in some cases, but length
constraints prevent us from describing all experiments in detail.

3.1 Closed-loop primate studies

A female rhesus monkey was trained to move a cursor in two dimensions to a series of randomly
presented targets. Kinematic data was acquired using a Wacom Intuos2 graphics tablet. During
movement, neural data was acquired using a Cerebus Data Acquisition System (Cyberkinetics, Inc.).
Kinematic and spike data were used to train a linear filter (see section 2.5), and for several minutes in
each session, cursor position was driven by the output of TG2’s linear filter.

FIGURE 8 shows the relationship between hand position and filter prediction during one “neural control”
period. The subject continued to successfully acquire targets during this period. Predicted hand position
correlated to actual hand position with a mean absolute error of 4.7 cm.

FIGURE 7: A screenshot of the “SoftMCS” program. The window on the left allows the user to modify the function
that drives a simulated cell (these functions can also be loaded in batch from a file). The window on the right shows
the current firing rate of 100 simulated cells and allows the user to modify the kinematic input sources.

 Page 12 of 14

3.2 Clinical studies

TG2 is currently being used in a set of clinical studies in which spike data is collected intraoperatively
from human motor and premotor cortex (via an Alpha-Omega data acquisition system) and transferred to
TG2 in real-time. Subjects are asked to perform a center-out task, and kinematic data is collected via a
Wacom digitizing tablet. TG2 is used to build decoding filters (linear filters and maximum likelihood
estimators), which drive a stimulus that is displayed on the subject’s monitor.

TG2 enabled the development and testing of the relevant experimental scripts and decoding filters to take
place offline or in simulation, with rapid transfer to the clinical environment. Furthermore, TG2 enabled
the use of nearly-identical behavioral tasks in preoperative functional imaging studies, allowing
assessments of task-related neural response via fMRI and electrophysiology.

Preliminary clinical decoding results were presented in [12].

3.4 Incorporation into a novel primate experiment

TG2 allowed the rapid incorporation of a novel hardware device constructed to measure wrist movements
in humans and monkeys. The intention is to allow a subject to perform a target-acquisition task using
both a two-dimensional hand tracker (a graphics tablet) and the wrist tracker, with identical task structure
and visual display.

A simple dynamic-link library (adhering to the “library input device” format) was developed to interface
with the device, and all other aspects of the experiment – including experimental logic, target
presentation, reward timing, etc. – worked as they had with the hand-tracking task.

FIGURE 8: TG2 hand position predictions vs. actual hand position for one primate experiment. The top plot shows the
predicted and actual x positions, the bottom plot shows y positions.

 Page 13 of 14

4. Conclusion

The results described above demonstrate that TG2 allows experimenters to easily design a wide variety of
behavioral tasks that interact with a wide variety of hardware devices. Furthermore, TG2 allows
experiments to transfer rapidly among experimental environments, which should greatly ease the
integration of primate results into clinical studies.

We propose that as neurophysiology becomes increasingly focused on translational research, novel
abstractions like those provided in TG2 will be incorporated into other software packages to similarly
accelerate the transition from animal to human experiments.

 Page 14 of 14

References

[1] A.I. Nobunago, B.K. Go, RB. Karunas, Recent demographic and injury trends in people served by the Model
Spinal Cord Injury Care System, Arch Phys Med Rehabil, 1999; 80: 1372-82.
[2] J.W. McDonald and D. Becker, Spinal cord injury: promising interventions and realistic goals, Am J Phys Med
Rehabil, 2003; 82(10 Suppl):S38-49.
[3] J. Wessberg, C.R. Stambaugh, J.D. Kralik, P.D. Beck, M. Laubach, J.K. Chapin, J. Kim, S.J. Biggs, M.A.
Srinivasan, M.A.L. Nicolelis, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
Nature, 2000; 408: 361-365.
[4] M.D. Serruya, N.G. Hatsopoulos, L. Paninski, M.R. Fellows, J.P. Donoghue, Instant neural control of a
movement signal, Nature, 2002; 416(6877): 141-2.
[5] D.M. Taylor, S.I. Tillery, A.B. Schwartz, Direct cortical control of 3D neuroprosthetic devices, Science, 2002;
296(5574):1829-32.
[6] DH. Brainard, The Psychophysics Toolbox, Spatial Vision, 1997; 10: 433-436.
[7] D.K. Warland, P. Reinagel, M. Meister, Decoding visual information from a population of retinal ganglion cells,
J Neurophysiol, 1997; 78(5): 2336-50.
[8] W. Wu, M.J. Black, Y. Gao, E. Bienenstock, M. Serruya, J.P. Donoghue, Inferring hand motion from multi-cell
recordings in motor cortex using a Kalman filter, SAB'02-Workshop on Motor Control in Humans and Robots: On
the Interplay of Real Brains and Artificial Devices, 2002; 66-73.
[9] E.E. Fetz, M.A. Baker, Operantly conditioned patterns on precentral unit activity and correlated responses in
adjacent cells and contralateral muscles, J Neurophysiol, 1973; 36: 179-204.
[10] P. Földiàk, The “ideal homunculus”: statistical inference from neural population responses, Computation and
Neural Systems, Eeckman F and Bower J, editors, Kluwer Academic Publishers: Norwell, MA, 1993; 55-60.
[11] T.H. Massie and J.K. Salisbury, The PHANTOM Haptic Interface: A Device for Probing Virtual Objects,
Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, 1994.
[12] J.P. Donoghue, M. Saleh, A. Caplan, D.S. Morris, S. Ramchandani, C. Ojakangas, G. Friehs, Direct Control Of
a Computer Cursor by Frontal Cortical Ensembles in Humans: Prospects for Neural Prosthetic Control, Abstract
presented at the Society For Neuroscience Annual Meeting, 2003; Program No. 607.9.

