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Abstract 
 
Previous studies have demonstrated the feasibility of reconstructing intended arm movements from neural 
spike trains in real-time.  Currently, research groups develop specialized environments for studying 
closed-loop control, and these environments typically depend on specialized hardware, multiple 
computers, and multiple software packages.  This complexity limits the transfer of neural prosthetic work 
to a clinical environment and the rapid implementation of new decoding algorithms or paradigms in 
animal studies.  In order to address these issues, we have implemented TG2, a Windows-based software 
package that integrates flexible behavioral control scripting with real-time neural decoding.  A novel 
state-machine-based representation of experiments allows behavioral tasks to be developed graphically.  
Device-independent hardware abstractions allow experiments to be rapidly transferred among a variety of 
neural data acquisition systems, kinematic input devices, and neural decoding algorithms.  An integrated 
simulation package allows offline development and debugging of real-time decoding algorithms.  
Although TG2 is designed for neurophysiology, it makes use of novel features that are applicable to a 
wide variety of behavioral experiments.  We discuss the design and implementation of TG2, the novel 
software architecture and operator interface techniques that separate it from related software packages, 
and its initial use in both clinical and animal studies. 
 
1. Introduction 
 
An estimated 11,000 new patients each year suffer from partial or total paralysis as a result of spinal cord 
injury alone [1].  Consequently, the restoration of movement and/or communication in motor-impaired 
patients remains a major goal in neuroscience research.  Although progress continues in the regeneration 
of damaged spinal cord tissue [2], several groups have recently demonstrated the potential of Brain-
Computer Interface (BCI) technology as an alternative approach.  Neural signals from motor cortex 
([3],[4],[5]), parietal cortex [3], and other CNS areas have been successfully decoded in real time to allow 
direct cortical control of computer cursors or robotic actuators, bypassing the spinal cord entirely.  These 
studies have spanned several species and numerous neural recording technologies. 
 
Despite these successes, the engineering of real-time neural decoding systems remains a challenge that is 
often solved by lab-specific and even experiment-specific decoding systems.  There are several systems 
available for stimulus generation and behavioral control (e.g. National Instruments LabView, 
PsychToolbox [6], and Reflective Computing’s Tempo), but none of these systems provide integrated 
communication with the variety of neural data acquisition systems or kinematic input devices that are 
widely used in motor neurophysiology and/or real-time decoding experiments.  As a result, research 
groups typically invest a significant amount of time building experimental platforms from several 
software packages, and it is often necessary to use several computers to manage the real-time decoding 
process. 
 
This complexity limits both the rate at which experiments can be conducted and the ease with which 
decoding algorithms can be transferred among experiments or into a clinical environment.  To address 
these issues, we have developed TG2, a software package that combines several aspects of real-time 
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decoding – in addition to standard behavioral control and stimulus presentation – into a single software 
package.  Several novel features separate TG2 from other packages currently in use for closed-loop 
neurophysiology studies; some of these features are summarized here: 
Hardware Abstraction 
 
TG2 provides device-independent abstractions for neural data and kinematic data that allow experiments 
to transfer easily among different environments.  The experimental logic, stimulus presentation, and real-
time analysis operate on device-independent coordinates and a device-independent representation of cells 
and spike trains.  These device-independent representations are logged to TG2’s data files (in addition to 
the raw input received from various devices), so offline analyses can also be transferred rapidly among a 
variety of experiments. 
 
For example, for an ongoing experiment in which a primate subject is presented with a moving cursor, we 
are able to rapidly toggle between several sources of position information, including a joystick, a wrist-
position tracker, and a neural decoding filter.  Similarly, we are able to transfer the same experiment 
scripts among several sources of real-time spike data, including three neural recording systems and a 
simulation environment, without modifying our experiment script or offline analysis scripts. 
Furthermore, rather than providing support for kinematic data acquisition from a small set of specific 
devices, TG2 provides communication with several general-purpose device interfaces, which are already 
implemented by numerous physical input devices.  Examples include Microsoft’s DirectInput interface 
and the WinTab interface for absolute pointing devices. 
 
Graphical Programming 
 
TG2 also allows users to define behavioral control scripts graphically, which greatly simplifies the 
process of creating experiments and allows researchers to develop complex experimental structures with 
limited programming time.   This has the added benefit of allowing most experimental features to be 
optimized within the software package, so users do not have to be concerned about the efficient 
implementation of complex features or experimental logic. 
 
External Interfaces 
 
For those users that require features that are not available from the graphical interface, TG2 can 
communicate in real-time with Matlab or with custom C/C++ libraries, locally or over a LAN.  Users can 
thus provide an interface between TG2 and custom experimental logic or custom hardware.  This is also 
the mechanism by which users can develop custom decoding algorithms. 
 
Integrated Simulation Environments 
 
The debugging and testing of real-time decoding systems has also traditionally presented a challenge to 
research groups in this field.  Real-time execution presents unique challenges associated with timing and 
performance, which reduces the effectiveness of offline debugging.  With this in mind, TG2 was 
developed in parallel with two simulation environments that assist in the debugging of real-time 
algorithms and experiments.  One of these environments “plays back” the spike train and kinematic 
stream collected from a previously recorded experiment, and the other uses a PC to generate spike trains 
based on input from a mouse or joystick.  
 
Simulation is particularly essential for clinical experiments, when debugging time is limited or 
unavailable in the experimental environment. 
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Integrated Decoding Algorithms 
 
In addition to allowing users to develop custom decoding algorithms, TG2 includes integrated, optimized 
implementations of several neural decoding algorithms that have been successfully employed by various 
research groups.  Specifically, TG2 includes a linear filter [7], a Kalman filter [8], a spike rate integrator 
[9], and a maximum-likelihood estimator [10].  These integrated algorithms allow researchers to rapidly 
conduct experiments that don’t require custom decoding algorithms; for example to explore user 
interfaces for BCI systems, training techniques for closed-loop control, or real-time control of novel 
actuators. 
 
The remainder of this paper will describe the implementation of the above features and TG2’s initial use 
in human and animal studies. 
 
2. Methods 
 
TG2 and supporting packages were developed in C++ (Microsoft Visual C++ 6.0).  TG2 was tested on 
several desktop and laptop computers running Windows 2000 and Windows XP. 
 
2.1 TG2 Description and Programming Model 
 
TG2’s core functionality provides behavioral task scripting and graphical display on two monitors (one 
for the subject and one for the operator).  FIGURE 1 shows a screenshot of TG2; the task display area is a 
windowed version of the fullscreen display that is presented to the subject. 
 
TG2’s programming model is structured around four fundamental entities: “targets”, “epochs”, “events”, 
and “conditions”. 
 
A “target” is a two-dimensional position and – optionally – its representation on one or two displays.  
FIGURE 1 shows several example target representations, including polygonal shapes, images, text, and 
“meters”.  Targets need not be displayed on the screen; a target’s two-dimensional position can be treated 
as a two-point vector for computation, rather than the location of a visual object.  Each target’s position 
can be mapped to one of several input devices (see section 2.2), and a target can perform several 
transformations on the input it receives from the corresponding device.  Available transformations include 
(but are not limited to) shifting, scaling, integration, differentiation, and low-pass filtering.  One of the 
available “input devices” to which a target can be mapped is a pair of variables, or the position of another 
target.  In this manner, targets – visible or invisible – can effectively be used as computational elements in 
a two-point data stream.  
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An “epoch” is a period of time in which TG2 is operating in a particular state; it is effectively one state of 
a user-defined finite-state machine.  A user-defined set of “events” is executed at the beginning of each 
epoch, and an epoch ends when one or more of several user-defined “conditions” becomes true.  Each 
condition in an epoch is associated with another epoch; when a particular condition becomes true, TG2 
transitions to the specified epoch. 
 
Example events include the manipulation of target visibility or position, the manipulation of digital output 
ports, the manipulation of internal variables (using arbitrary arithmetic expressions), the control of movie 
playback or target animation, sound playback, and speech synthesis. 
 
Example conditions include timeouts, intersections among targets, value changes on digital input pins, 
input device events (e.g. button-presses), and arbitrary boolean expressions in terms of internal variables. 
Conditions can be “AND-ed” together to form more complex boolean expressions, and events can be 
executed either unconditionally or only if certain conditions are true when an epoch begins.  Most events 
and conditions can also be parameterized in terms of internal variables that the user can control 
throughout an experiment.  In this manner, arbitrarily complex experimental structures, making full use of 
optimized display features and complex hardware interaction features, can be built quickly from a 
reasonably small number of available events and conditions, without requiring low-level programming. 
 
All epochs, events, conditions, and targets can be copied and pasted to minimize repetitive definitions.  
Additionally, an “asynchronous” list of conditions is constantly evaluated during any epoch.  This allows 
users to define a single condition that should cause a transition regardless of the current state; for 
example, a trial might be aborted at any point if the subject releases an input device. 
 

 
 

FIGURE 1: The main operator interface to TG2.  The task area 
shows several example targets; these targets are (optionally) 
mirrored on the subject’s full-screen display. 
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FIGURE 2 contains a pseudocode representation of the state machine used to execute an experiment, and 
FIGURE 3 shows the GUI used to edit the events and conditions associated with a particular epoch. 
 
2.2 Input devices 
 
Any target in TG2 can be mapped to an input device; the input from the device can optionally be 
transformed according to the functions discussed in section 2.1.  Note that in addition to the functions 
described above, input device data can be transformed through arbitrary functions using TG2’s arithmetic 
expression parser. 
 
Since physical input devices tend to vary significantly across experiments and across research groups, the 
input device formats we chose to support in TG2 are intended to encapsulate a wide variety of possible 
physical input devices.  Only one of the available input sources uses a manufacturer-specific API 
(SensAble Inc.’s “Ghost” API for Phantom haptic feedback devices [11]); each of the other TG2 “input 
devices” actually represents a set of physical devices that present a particular interface.  In this manner, 
TG2 can be used with a variety of physical input devices, usually without requiring low-level 
programming to interface with a new device. 
 
For example, a target can be mapped to any device that supports Microsoft’s DirectInput standard.  This 
includes commercial game devices (joysticks, gamepads, etc.) and a variety of other devices.  A target’s 
position can be mapped to any combination of the numerous axes defined by the DirectInput standard.  
This approach has been used to interface TG2 with several input devices, including several standard 
desktop joysticks and several non-ferromagnetic joysticks designed for use in fMRI environments 
(Resonance Technology). 
 
Similarly, a target can be mapped to any device that supports the WinTab (LCS/Telegraphics) API, a 
standard for interfacing with absolute pointing devices.  We have used this approach to collect kinematic 
training data for neural filtering algorithms, in humans (intraoperatively) and non-human primates (see 
results in section 3). 
 
The Windows system cursor serves as another general-purpose input device; a target can be mapped to a 
transformed version of the Windows cursor position, which allows TG2 to interface with devices that do 
not provide a low-level API but are able to manipulate the Windows cursor.  We have used this approach 
to interface with a touchscreen (Keytec, Inc.) and with the mouse, which we use for demonstrations and 
pre-operative patient training. 
 

curEpoch := 0; 
 
while(1) { 
  execute all events associated with epoch curEpoch; 
  while(1) { 
    for each condition associated with epoch curEpoch { 
      if (the current condition is true) { 
        if (the current condition ends the experiment) exit;  
        curEpoch := (the epoch associated with the current condition); 
        break; 
      } 
    } 
    if (any conditions in this epoch became true) break; 
  } 
} 
 
FIGURE 2: A pseudocode representation of TG2’s finite state machine.
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An additional input stream, which we refer to as a “library input device”, allows the user to specify a 
Windows Dynamic Link Library (DLL) that contains a custom interface to an unsupported data stream.  
The TG2 package includes a header file that describes the interface TG2 expects to use to communicate 
with library input devices.  Users whose hardware does not conform to any supported standards can 
implement the specified functions in a Windows DLL to connect TG2 to custom hardware.  This interface 
can also be used for writing custom decoding algorithms; TG2 treats library devices as an arbitrary source 
of input data and can provide arbitrary experiment state information to the library.  We have used this 
approach to support a wrist-position-tracking device that transmits data to a digital input card; this device 
is currently being used in primate physiology experiments. 
 
In addition to the “input devices” supported by TG2 – which represent continuous streams of position or 
numeric information – TG2 can also process discrete events from the keyboard or from digital input 
sources.  The “digital input” condition allows TG2 to transition among epochs based on the state of a 
digital input port; native support is provided for the parallel port and any Advantech digital input card.  
We have used this approach to connect TG2 to a hand-switch which our primate subjects are required to 
hold during unilateral arm movement experiments. 
 
2.3 Neural data processing 
 
Several unique problems arise in real-time communication with neural data acquisition devices.  There is 
no standard format for network transmission or file storage of neural data (although the NeuroShare 
project (http://neuroshare.org) represents progress toward a common interface for file access).  This non-
uniformity requires researchers using multiple systems to modify online and offline analyses to deal with 
the specific formats offered by particular manufacturers.  Additionally, real-time aspects of decoding 
software generally have to be debugged and tested on each system, to account for varying data formats 
and timing characteristics. 
 
In order to simplify online and offline analyses, TG2 has native support for communicating with several 
data acquisition systems (including systems from Plexon, Cyberkinetics, and Alpha-Omega Engineering), 
and allows the user to operate on a device-independent representation of neural data.  The decoding 
algorithms incorporated natively into TG2 (see section 2.4) are parameterized in terms of device-
independent “channels” and “units”, and the data logged to TG2’s data files is in a common format that’s 
independent of the recording system (although system-specific configuration information is also logged to 
disk). 
 
An additional challenge in real-time decoding arises from the fact that training stimuli and kinematics are 
generated/acquired on a clock that is independent of the clock used on the recording hardware.  In order 
to synchronize the data necessary for online reconstruction, researchers are typically required to generate 
device-specific synchronization codes.  TG2 handles this synchronization internally, by generating 
periodic digital pulses on a digital output card (the parallel port and Advantech PCI digital output cards 
are supported).  The supported neural recording systems respond to digital codes with timestamped 
network packets; TG2 extracts synchronization information from the timestamped responses.  In this 
manner, all neural data can be written to TG2’s data files or made accessible online with timestamps that 
are synchronized to the behavioral stimulus clock, and users do not have to be concerned with 
synchronization adjustments (device timestamps are also recorded to disk and made available online). 
 
2.4 Network interface 
 
In addition to providing access to TG2 state information via the “library device” interface, which requires 
the development of a custom C/C++ library, TG2 also includes a TCP/IP server that allows clients to 
access and manipulate TG2 state variables.  Via this interface, clients can modify and access internal 
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numeric variables and target positions; clients can also start and stop experiments.  To avoid 
request/response latencies, clients can request that a particular set of target positions or variable values be 
periodically streamed over the network. 
 
Users can access the network server from arbitrary client software (the protocol and packet format are 
made available to researchers using TG2).  We have also provided a C++ library that manages the low-
level connection state and a Matlab wrapper for this library.  Thus, users can access and manipulate 
experimental state information in real-time from Matlab, either on the machine on which TG2 is running 
or on a remote machine.  This is the recommended approach for researchers developing complex 
behavioral logic that is not available from the GUI or users developing custom neural decoding filters.  
This approach allows users to utilize the graphics, data logging, and hardware interface features available 
within TG2, while still developing completely custom behavioral tasks from a fully scripted language. 
 
Additionally, we have developed several clients that use the TG2 network server for a variety of external 
applications.  These clients serve as both a demonstration of the network server’s functionality and a set 
of extensions to the core TG2 functionality: 
 
 
• TG2-3D: An increasing number of projects in motor physiology and neural prosthetics require three-

dimensional movements and three-dimensional stimulus display.  Since the native display system in 
TG2 represents only two-dimensional objects, we have developed an external client that receives state 
information and target position information from TG2 and renders targets moving in three 
dimensions.  This can be run on the same computer as TG2 itself, but it offers the option of offloading 
time-consuming rendering operations onto a separate computer. 
  
FIGURE 5 shows an example of a set of targets displayed in TG2 and in the TG2-3D client.  The client 

 
 

FIGURE 3: An example of TG2’s GUI-based 
programming environment.  The interface for editing a 
specific epoch is shown.  Several events are defined 
on the left; these events are executed when this epoch 
begins.  Several conditions are defined on the right; 
when one of these conditions becomes true during an 
experiment, TG2’s state machine jumps to the 
corresponding epoch. 

 
 

FIGURE 4: TG2’s user interface for managing linear and Kalman 
decoding filters. 
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is shown here in windowed mode, but it can also be run in fullscreen mode and in page-flipped stereo 
fullscreen mode, for presentation of stereo images to a subject. 

 
• Desktop Control Client:  As a demonstration of TG2’s application to brain-computer interfaces, and 

as a tool for users interested in exploring user interface issues associated with BCI’s, we have also 
developed a client that connects to TG2’s network server and synthesizes mouse and keyboard events 
on a remote desktop based on filter predictions generated in TG2.  The client can also synthesize 
speech from the keystrokes supplied by TG2 (using the Microsoft Speech API).  FIGURE 6 shows the 
user interface for the “desktop control client”. 

 
2.5 Integrated decoding algorithms 
 
Many research applications do not require custom decoding algorithms.  For example, users interested in 
exploring user interface aspects of brain-computer interfaces or the control of novel robotic actuators 
from neural signals may prefer to use optimized implementations of previously-developed decoding 
algorithms. 
 
With this in mind, TG2 includes native implementations of several neural decoding algorithms; each 
allows graphical configuration of relevant parameters to adjust decoding performance for specific 
experiments.  The user configures these parameters in a filter-specific GUI, and specifies a target or set of 
“targets” (see section 2.1) to use as a source of kinematic training data.  Values computed by the filters 
can be written to internal variables – accessible via events and conditions (see section 2.1) – or directly to 
target positions. 
 
The four algorithms that are included in TG2 are described briefly here, along with information 
about their integration into TG2. 
 
• An optimal linear filter, as presented in [7] and employed in closed-loop primate decoding in [4]. 

 
The parameters used to define the linear filter – specifically the filter length and bin size – can be 
controlled from a GUI (see FIGURE 4).  Additionally, the subset of active cells to be used for 
decoding is controllable from the GUI.  We have found that a practical approach to rapidly selecting a 
meaningful subset of available cells is to sample only those cells that fall above a specified mean 
firing rate over the training period.  This method of selecting cells is available from the linear filter 
GUI, which allows the user to avoid manually selecting individual cells. 
 
A list of filters that have been generated is available in the GUI with descriptive information; a user 
can rapidly toggle among available filters to evaluate their online performance.  Filters are also saved 
to disk and can be re-loaded in future sessions.  Furthermore, training data can be collected in data 
“blocks” of arbitrary length, and filters can be generated from arbitrary sets of data blocks.  This 
allows a user to experiment with various combinations of training data periods and to eliminate 
periods of low-quality behavioral data from filter training. 
 
The native linear filter allows regression onto two or three kinematic signals (typically x, y, and z 
hand position).  Results obtained using the native linear filter implementation in primate experiments 
are presented in section 3. 
 

• A Kalman filter, as presented in [8].  The parameters used to configure the Kalman filter are similar 
to those used to configure the linear filter, so a common GUI (FIGURE 4) is used to control both 
filters. 
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• A maximum-likelihood estimator (MLE), as presented in [10].  The MLE is trained to classify 
discrete states based on the observed mean firing rates of each sampled unit around the behavioral 
state.  Training states are specified via “discrete classifier state” events.  For example, in a multiple-
direction center-out task, the user would typically include a “discrete classifier state” event around the 
time of directional stimulus. 

 
The user can graphically configure the time window around a state that’s used for classification, along 
with the subset of available cells that are used for classification.  Estimators can be saved to disk and 
recalled in later session. 
 
• A “leaky” rate integrator, as presented in [9].  This is one of the simplest approaches to real-time 

decoding; a continuous value is computed as a weighted sum of the firing rates of a number of cells.  
The user can graphically adjust the subset of cells being sampled, the time constant for rate 
integration, and the minimum and maximum output values. 

 
2.6 Data logging 
 
The abstraction of hardware devices is a major advantage of TG2’s architecture, particularly because data 
files can be recorded in a device-independent format and can thus be transferred easily among offline 
analysis programs. 
 
TG2 (optionally) generates four data files per experiment; each is a simple fixed-format, tab-delimited 
ASCII file that is parsed easily by offline analysis programs (e.g. Matlab or Excel).  The time and date at 
which an experiment was started is (optionally) automatically incorporated into the filename of each data 
file; this greatly simplifies offline indexing and analysis. 

 

Figure 6: The user interface for the TG2 “Desktop 
Control Client”.  

 

FIGURE 5: The TG2-3D client, displaying a 3d 
rendering (top) of the 2d targets displayed in TG2’s 
main console (bottom).  Depth values are drawn 
from TG2 state variables that the user associates 
with each target. 
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• A kinematic data file includes device positions received from various input devices, both in native 
device coordinates and in TG2’s device-independent coordinate system.  Similarly, device-specific 
timestamps are recorded to the data log along with device-independent “game time” values, to allow 
simple synchronization among multiple devices. 

 
• A spike data file includes a timestamp for each spike delivered by the neural recording hardware, both 

as a device-independent TG2 “game time” and as a timestamp on the clock used by the recording 
hardware. 

 
• An “event” data file contains a representation of all events that were executed during an experiment, 

and all state transitions (“conditions” that evaluated to “true”). 
 
• A “filter information” data file contains a representation of all neural filters that were built, loaded, or 

modified during an experiment.  
 
Because these files are in a common format and use a common clock, it is easy for a user to re-construct 
an entire experiment offline for analysis, debugging, or presentation. 
 
Since it is not practical to capture all neural waveform information in TG2’s data files when they are 
already being collected by the recording hardware, TG2 also includes a facility for sending behavioral 
codes to neural recording hardware for offline synchronization.  The user can use a “digital output event” 
to write data to a particular hardware port, and TG2 will handle the low-level details of handshaking with 
the recording hardware.  Similarly, TG2 can be configured to send a kinematic (target position) stream to 
a neural recording system as a series of digital codes.  Thus users that prefer to use the neural recording 
system’s data files online or offline can have access to the kinematic and behavioral events generated by 
TG2 via the recording system. 
 
2.7 Simulation 
 
Real-time decoding algorithms and applications are difficult to design and test offline; problems related to 
event timing and computational efficiency often arise only when algorithms are run in real-time.  
Furthermore, for clinical applications, it is often helpful to be able to “practice” experimental paradigms 
outside of the clinical environment.  With this in mind, we have developed two simulation packages that 
send neural data to TG2 in real-time over a network, emulating the behavior of a neural recording system 
that is recording from a subject. 
 
The first simulation package is called “SoftMCS” (for “software motor cortex simulator”); this software 
takes input from a mouse or joystick and – via a set of user-defined functions that govern the firing rates 
of each simulated cell – generates a spike train that reflects the position, velocity, and/or acceleration of 
each input device axis.  The user defines coefficients that transform device position into a firing rate for 
each cell, and this rate is used to drive a Poisson process that generates the actual spiking pattern.    
Spikes are sent over the network in a format that mimics the output of the Cerebus Data Acquisition 
System (Cyberkinetics, Inc.).  FIGURE 7 shows a screenshot of the SoftMCS program. 
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The second simulation package we have developed as a complement to TG2 reads previously-recorded 
data files (either TG2 data files or data recorded in Plexon’s .plx file format) and streams them back to 
TG2 in real-time, simulating the output of a Plexon or Alpha-Omega neural recording system.  If 
kinematic and neural information are available in the selected data files, an entire experiment can be 
repeated offline, in simulated real-time. 
 
3. Results  
 
We will briefly discuss our experiences with the application of TG2 to various experimental environments 
and various neural recording systems.  Quantitative results will be presented in some cases, but length 
constraints prevent us from describing all experiments in detail. 
 
3.1 Closed-loop primate studies 
 
A female rhesus monkey was trained to move a cursor in two dimensions to a series of randomly 
presented targets.  Kinematic data was acquired using a Wacom Intuos2 graphics tablet.  During 
movement, neural data was acquired using a Cerebus Data Acquisition System (Cyberkinetics, Inc.).  
Kinematic and spike data were used to train a linear filter (see section 2.5), and for several minutes in 
each session, cursor position was driven by the output of TG2’s linear filter. 
 
FIGURE 8 shows the relationship between hand position and filter prediction during one “neural control” 
period.  The subject continued to successfully acquire targets during this period.  Predicted hand position 
correlated to actual hand position with a mean absolute error of 4.7 cm. 
 

 
 

FIGURE 7: A screenshot of the “SoftMCS” program.  The window on the left allows the user to modify the function 
that drives a simulated cell (these functions can also be loaded in batch from a file).  The window on the right shows 
the current firing rate of 100 simulated cells and allows the user to modify the kinematic input sources. 
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3.2 Clinical studies  
 
TG2 is currently being used in a set of clinical studies in which spike data is collected intraoperatively 
from human motor and premotor cortex (via an Alpha-Omega data acquisition system) and transferred to 
TG2 in real-time.  Subjects are asked to perform a center-out task, and kinematic data is collected via a 
Wacom digitizing tablet.  TG2 is used to build decoding filters (linear filters and maximum likelihood 
estimators), which drive a stimulus that is displayed on the subject’s monitor. 
 
TG2 enabled the development and testing of the relevant experimental scripts and decoding filters to take 
place offline or in simulation, with rapid transfer to the clinical environment.  Furthermore, TG2 enabled 
the use of nearly-identical behavioral tasks in preoperative functional imaging studies, allowing 
assessments of task-related neural response via fMRI and electrophysiology. 
 
Preliminary clinical decoding results were presented in [12]. 
 
3.4 Incorporation into a novel primate experiment 
 
TG2 allowed the rapid incorporation of a novel hardware device constructed to measure wrist movements 
in humans and monkeys.  The intention is to allow a subject to perform a target-acquisition task using 
both a two-dimensional hand tracker (a graphics tablet) and the wrist tracker, with identical task structure 
and visual display. 
 
A simple dynamic-link library (adhering to the “library input device” format) was developed to interface 
with the device, and all other aspects of the experiment – including experimental logic, target 
presentation, reward timing, etc. – worked as they had with the hand-tracking task.  

 
 

FIGURE 8: TG2 hand position predictions vs. actual hand position for one primate experiment.  The top plot shows the 
predicted and actual x positions, the bottom plot shows y positions. 
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4. Conclusion 
 
The results described above demonstrate that TG2 allows experimenters to easily design a wide variety of 
behavioral tasks that interact with a wide variety of hardware devices.  Furthermore, TG2 allows 
experiments to transfer rapidly among experimental environments, which should greatly ease the 
integration of primate results into clinical studies. 
 
We propose that as neurophysiology becomes increasingly focused on translational research, novel 
abstractions like those provided in TG2 will be incorporated into other software packages to similarly 
accelerate the transition from animal to human experiments. 
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