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ABSTRACT 
Although numerous devices exist to track and share exercise 
routines based on running and walking, these devices offer 
limited functionality for strength-training exercises. We in-
troduce RecoFit, a system for automatically tracking repeti-
tive exercises – such as weight training and calisthenics – via 
an arm-worn inertial sensor. Our goal is to provide real-time 
and post-workout feedback, with no user-specific training 
and no intervention during a workout. Toward this end, we 
address three challenges: (1) segmenting exercise from inter-
mittent non-exercise periods, (2) recognizing which exercise 
is being performed, and (3) counting repetitions. We present 
cross-validation results on our training data and results from 
a study assessing the final system, totaling 114 participants 
over 146 sessions. We achieve precision and recall greater 
than 95% in identifying exercise periods, recognition of 
99%, 98%, and 96% on circuits of 4, 7, and 13 exercises re-
spectively, and counting that is accurate to ±1 repetition 93% 
of the time. These results suggest that our approach enables 
a new category of fitness tracking devices.  
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INTRODUCTION 
Regular exercise offers numerous health benefits, including 
improved cardiovascular fitness and a reduction in the risk 
of obesity [15,16,27]. Furthermore, regular exercise offers 
entertainment and social value, and has been correlated with 
improved cognitive and emotional well-being [11,13,34]. 

Despite growing awareness of these benefits, maintaining or 
expanding a regular exercise regimen is challenging [20,30]. 
Consequently, most individuals do not maintain recom-
mended levels of activity [5]. Fortunately, research has 

demonstrated that automatically tracking exercise can moti-
vate activity, particularly in the case of pedometry, which has 
been widely deployed and extensively studied [4,7,23]. 

The consumer electronics market has recognized this oppor-
tunity: devices already exist to track several fitness activities. 
Pedometers and GPS devices, for example, primarily target 
walking and running. Console accessories, including the Mi-
crosoft Xbox Kinect and the Nintendo Wii Fit, target indoor 
workouts that are closely tied to a stationary display. High-
end cardio machines (e.g., stationary bikes, elliptical, etc.) 
can send workout summaries to social media or to a phone. 

However, this landscape of devices misses two major cate-
gories of fitness activities: weight training and calisthenics. 
Here we use “calisthenics” to refer to strength-training exer-
cises that do not necessarily involve weights: sit-ups, push-
ups, jumping jacks, etc. For some individuals, these catego-
ries of exercise may be more sustainable than walking or run-
ning, for lifestyle or preference reasons. Even for those who 
regularly walk or run, weight training and calisthenics can be 
a critical part of a balanced exercise program: the Centers for 
Disease Control recommends muscle-strengthening activi-
ties at least twice a week for adults [6], backed by research 
showing the benefits of muscle-strengthening for weight loss 
and overall health [20], but compliance with these recom-
mendations is even lower than for aerobic activities [5]. 

Wearable fitness sensors, such as the Nike FuelBand and Fit-
Bit Flex, track caloric expenditure and overall activity and 
can be used during exercise; however, no wearable device 
provides high-fidelity information specifically relevant to 
strength training (i.e., reps, sets, and time; data types that are 
typically tracked manually). Techniques based on sensors in 
the environment (e.g. cameras) cannot robustly handle the 
variety of postures or the complexity of surroundings associ-
ated with weight training and calisthenics. 

In this work, we aim to bring the benefits of wearable, auto-
matic tracking to strength-training exercises, adding to the 
growing landscape of technology support for exercise moti-
vation and measurement. Just as a GPS watch offers a runner 
the ability to “set it and forget it” when starting a workout, 
we seek to provide real-time feedback and post-workout 
analysis with no intervention by the user during a workout. 

In this paper, we describe and evaluate a novel pipeline for 
separating exercise from background activity, automatic ex-
ercise labeling, and repetition counting. 
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RELATED WORK 

Exercise Analysis 
The most relevant previous work is that of Muehlbauer et al. 
[24], who similarly divide the problem into segmentation, 
recognition, and counting. They achieve 85% segmentation 
accuracy and 94% recognition accuracy (10 classes) using 
subject-independent training. We build on this work to im-
prove robustness and accuracy, and we validate RecoFit at a 
larger scale. Like the present work, their approach to seg-
mentation uses features based on the autocorrelation. How-
ever, [24] uses heuristic thresholds for segmentation; Reco-
Fit uses learned segmentation, which we believe is essential 
to robustness and scalability. [24] identifies sensor place-
ment variation as a key challenge. However, they don’t ad-
dress this algorithmically; RecoFit introduces dimensionality 
reduction to allow orientation-invariant analysis. RecoFit 
adds a deeper approach to repetition counting, addressing 
orientation-invariance and false peak rejection, which results 
in higher counting accuracy. Finally, [24] doesn’t address 
real-time scenarios; we discuss all stages in the context of an 
online application, identify latency tradeoffs, and include re-
sults for online and offline recognition. 

myHealthAssistant [31] classifies gym exercises from three 
accelerometers (on the hand, arm, and leg), using a Bayesian 
classifier trained on the mean and variance on each accel-
erometer axis. They achieve 92% accuracy for 13 exercises, 
but they use subject-specific training. They address repeti-
tion counting with a combination of autocorrelation-based 
period estimation and peak counting on one of the accel-
erometer axes; we build on this approach to handle non-axis-
aligned movements and more complex temporal patterns 
(e.g. secondary peaks within repetitions, preparatory move-
ments) that are common in natural exercise behavior. This 
work does not address segmentation. 

Chang et al. [8] use two accelerometers (on the hand and 
waist), and compare a Hidden Markov Model (HMM) and a 
Bayes Classifier for exercise recognition. They achieve 95% 
accuracy for nine exercises using subject-specific training, 
and 85% accuracy using subject-independent training. They 
also address counting, using a matched filter and an HMM. 
This work does not address segmentation. 

Gesture Spotting 
A significant component of our contribution is exercise seg-
mentation, or finding exercise amidst periods of non-exer-
cise. A similar problem exists in gesture recognition: ges-
tures are performed sporadically amidst non-gesture move-
ment. The problem of isolating gestures is typically called 
“gesture spotting”. Here we give an overview of techniques 
for motion-based gesture spotting, but we refer to [25] for a 
review of techniques based on computer vision. 

Hidden Markov Models (HMMs) are commonly used for 
gesture recognition from inertial sensors; many approaches 
perform spotting by thresholding HMM probabilities 
[10,22]. To overcome the instability of HMM probabilities, 

[17] uses similarity to known examples as a preprocessing 
filter, [19] uses boosting to improve threshold models, and 
[1] proposes online threshold adaptation. Outside of HMMs, 
other proposed spotting approaches have been based on dy-
namic time warping [26] and string matching [32]. 

Autocorrelations and Periodicity 
One of our key contributions lies in the use of the autocorre-
lation function to find regions of self-similar, repetitive ex-
ercise. This is inspired by work in other domains that has 
leveraged the autocorrelation for analyzing other highly pe-
riodic signals, e.g. for tracking the pitch of a musical signal 
[3] or for finding abnormalities in EKG signals [33]. A par-
ticularly close analogy to our work is the popular use of the 
autocorrelation function in speech analysis to separate 
speech from non-speech audio [2]. 

Continuous Activity Recognition 
Coarse-grained classification of activities from inertial sen-
sors has been widely studied in HCI [9,14] and health care 
[12]. In general, this work tries to classify typical activities 
(such as walking, sitting, running, driving, and sleeping), to 
estimate caloric expenditure and support context-aware com-
puting. Precise boundaries between activities are generally 
less critical than in the present work. Surveys are available 
on activity recognition systems [21], healthcare applications 
[28], and classification techniques [29]. 

WHY IS AUTOMATIC EXERCISE ANALYSIS HARD? 
Our goal is to track exercises from an arm-worn sensor, with 
no user-specific training, and no intervention from the user 
during a workout. In this section, we will discuss some of the 
challenges associated with this goal, motivating the specific 
algorithmic choices we describe in the next section. 

Exercise looks very similar to non-exercise 
Perhaps the most challenging problem in this space is that 
time spent actually exercising within the context of a 
workout session may be as little as 10% or as much as 100% 
of the total session. Between exercises, one walks around the 
workout space, socializes, stretches, rests, drinks water, se-
lects and retrieves equipment, etc. The distinction between 
these non-exercise periods and actual exercise may be obvi-
ous to a human observing video, but to a wearable sensor, 
these distinctions are much less clear. 

Magnitude alone is rarely informative; for high-velocity ex-
ercises like jumping jacks, motion magnitude may exceed 
typical non-exercise magnitude. These are the “easy cases” 
(Figure 1a), but such activities are the exception: most exer-
cises are actually performed quite slowly, and exercisers of-
ten strive to avoid jerky movements that would yield high 
acceleration values. In practice, the amplitude of acceleration 
during exercise is generally consistent with that during non-
exercise (Figure 1b), and non-exercise stretches may signif-
icantly exceed the magnitude of most exercises.  

Some exercises, e.g. pushups, result in almost no translation 
of an arm-worn sensor, and when performed slowly, the slow 
rotation of a sensor is very close to the noise floor of most 



 

 

gyroscopes. In fact, the primary observable phenomenon in 
these cases is not energy on any sensed axis, but a repetitive 
change in the gravity axis observed by the accelerometer, a 
phenomenon not observed at all for a non-rotational exercise 
like shoulder presses (lifting a weight straight overhead from 
the shoulders). This diversity in the fundamental phenomena 
that characterize exercises motivates our use of a machine 
learning approach to segmentation. 

Fortunately, one intuition does allow us to separate most ex-
ercise from most non-exercise: exercise is typically more pe-
riodic (i.e., repetitive) than non-exercise. Consequently, 
many of our features are based on the autocorrelation of our 
signals, from which we can derive metrics of repetitiveness. 

However, this leads to another challenge: walking is the most 
common non-exercise activity performed during a workout. 
Walking is extremely periodic, and is similar in amplitude to 
many exercises. In fact, it’s almost impossible to heuristi-
cally describe systematic differences between walking and 
exercise, which further motivates our use of a machine learn-
ing approach to segmentation, with a strong emphasis on 
walking in our training data collection. 

Furthermore, dynamic stretching – repetitive movements de-
signed to loosen joints or muscles, but not intended as exer-
cises per se – is quite common during a workout. This pre-
sents a tremendous challenge to robust exercise segmenta-
tion: separating “exercise” from “dynamic stretching” is al-
most a question of semantics, but one that significantly im-
pacts user experience. Fortunately, we observed throughout 
our data collection that it is extremely rare for an individual 
to consistently perform the same dynamic stretching move-
ment – without changing orientation – for more than a few 
seconds, which supports our use of self-similarity as a core 
of our feature set, and motivates the temporal smoothing ap-
proach we will describe in the next section. 

Though challenging, we consider robust segmentation criti-
cal to the practicality of automatic exercise analysis. At the 
highest level, false positives (when the system tracks an ex-
ercise that the user did not actually perform) or false nega-
tives (when the system fails to “credit” the user for an exer-
cise) are potentially disastrous from a user experience per-
spective. Furthermore, even when segmentation is “correct”, 
the boundaries of exercises identified by our segmenter need 
to be precise to enable robust performance at subsequent 
stages of our pipeline. In particular, reliable counting relies 
heavily on accurate segmentation to ignore preparatory and 
post-exercise movements, such as lying down to perform 
pushups, or putting weights down after biceps curls. 

Variability in form 
Since we aim to require no user-specific training of our sys-
tem, variability in users’ interpretations of exercise descrip-
tions, and their ability to consistently execute a particular 
form, has a tremendous impact on recognition accuracy. 
Even an exercise like pushups, which has a consistent defi-
nition to most potential users, exhibits wide variation in arm 

posture, pace of repetition, and the temporal “shape” of the 
movement. And less familiar exercises often exhibit an en-
tirely more challenging level of variability, where users in-
terpret the fundamental form of the exercise differently. 

In developing RecoFit, we assumed that end-users would 
have some familiarity with the available exercises, but that 
users would not typically watch a proscriptive video or have 
access to a coach who would refine their form. Conse-
quently, we believe there is no way to address the problem 
of variation in form other than large-scale training data col-
lection with enough flexibility to elicit such variation. There-
fore, users in both our training data collection and our eval-
uation study were given instructions – which they were not 
required to read – that would simulate “reasonable familiar-
ity”, but allow enough interpretation to elicit natural varia-
tion. Instructions contained an illustrative image and a high-
level description for each exercise, and experimenters did not 
coach or correct form during data collection.  

Temporal Irregularities  
Counting exercise repetitions is sometimes straightforward, 

(a) 

(b) 

Figure 1: Challenges separating exercise from non-exercise. 
(a) The (rare) easy case: a participant goes from a relatively 

motionless state to rapid movement. (b) A typical case: a par-
ticipant finishes a set, puts weights down, and stretches a bit; 

exercise and non-exercise amplitude are almost identical. 

(a) 

(b) 

(c) 

(d) 

Figure 2: Counting challenges. (a) Consistent large peaks. 
(b) Each repetition contains multiple similar peaks. (c) Ir-
regular timing and form. (d) Irregular amplitude. Circles 
indicate repetitions, correctly identified by our algorithm. 



 

 

such that a simple peak-picking or zero-crossing approach 
will yield an accurate count (Figure 2a). Typically, this is 
only true of high-amplitude activities like jumping jacks. 
Figure 2b is a typical set of squats, with two bursts of accel-
eration per repetition, resulting in a “double peak” for each 
count, motivating our use of autocorrelation-based period es-
timation combined with peak counting. Figures 2c and 2d 
highlight very challenging cases. 

Unpredictable device orientation 
Finally, with our specific goal of an arm- or wrist-worn iner-
tial sensor, the form factor itself presents a challenge: in real-
world use, an arm-worn sensor will naturally rotate differ-
ently around different users’ arms, as a consequence of pref-
erence and natural fit. Therefore, RecoFit assumes that it can 
“trust” the axis pointing along the arm (a watch, for example, 
always has its face pointed out, in a readable orientation), but 
that the device might rotate arbitrarily around the arm. 

TRAINING DATA COLLECTION 
The previous section discussed the challenges associated 
with exercise analysis, motivating a large-scale training data 
set exhibiting real-world behavioral variability. 

Data Collection Hardware 
Data was collected from an armband (Figure 3) worn on the 
right forearm, containing a SparkFun “Razor IMU” inertial 
sensor, which includes a 3-axis accelerometer and a 3-axis 
gyroscope. The armband also included a battery and a Blue-
tooth radio, which transmitted sensor values to a PC at 50Hz. 

“Natural” Environment and Procedure Design 
We cannot stress enough the importance of encouraging nat-
ural variability in training data. Anecdotally, we began this 
project with a smaller data set (30 participants), collected in 
a space-constrained laboratory environment that did not aes-
thetically resemble a gym, with clear instructions regarding 
sequencing and form. Cross-validation on this data set was 
unrealistically encouraging: segmentation, recognition, and 
counting were all close to perfect. We used this data to train 
our system and deployed a real-time prototype in a more re-
alistic environment, and it quickly became clear that early 
success was the result of “robotic” behavior among training 
participants: segmentation dropped to precision/recall levels 
close to 50% when users were in a more natural environment. 

In other words, it became clear that real-world deployment 
required a data set that was both larger and more natural. 
The practicalities of labeling activities and scaling to over 
100 participants prevented us from operating in an actual 
gym, so we retro-fitted a large lab space to resemble a home 
gym, with appropriate décor (wallpaper, curtains, etc.), video 
and audio entertainment under participants’ control, a couch 
for rest periods, and no computers or experimenters visible 
to participants. 

The data collection procedure changed as well: participants 
were given a set of exercises to perform, akin to a workout 
assigned by a trainer, but were instructed that they could per-

form them in any order. A wide range of repetitions was sug-
gested for each exercise, but participants were not required 
to complete any particular number of repetitions. In order to 
diversify the non-exercise activity in our training data, par-
ticipants were instructed to take a break of about five minutes 
somewhere near the middle of the session, during which they 
could watch TV, check email, etc. Participants were also 
asked to spend five minutes stretching during the session. 
Sessions were typically about 45 minutes, and participants 
had no contact with the experimenter once the session began. 

We provided instructions that included an illustration and a 
short textual description of each exercise. In practice, most 
participants looked at the images and did not carefully read 
the text. This was consistent with our goal of simulating the 
“reasonable familiarity” with the exercises that one might 
have when using a system like RecoFit. 

Walking  
Although the primary goal was a natural workout, we also 
needed to address the problem of walking specifically. We 
addressed this to some extent during the workouts them-
selves, by making the space large enough to facilitate walk-
ing, and by positioning water, entertainment, and weights in 
realistically-spaced positions around the room to encourage 
movement. However, the proportion of walking data during 
sessions was not enough to fully address this problem, so at 
the end of approximately 25 of the sessions, participants 
were asked to “walk around the room” for five minutes.  

Labeling 
An experimenter watching from another room labeled all ex-
ercises and intervening periods of non-exercise – with the 
type of exercise, the repetition count, and the start/end times 
of that exercise – using Noldus Observer XT software. Ses-
sions were also video-recorded; missing or uncertain labels 
were corrected from video post-hoc. Video data was syn-
chronized with the sensor data by having the participant tap 
on the sensor unit at the end of the session. 

It is almost impossible to label most exercise boundaries 
from video with our desired precision (~200ms). Thus, 
boundaries of exercise regions were further refined based on 
visual analysis of the accelerometer traces. 

Participants and exercises 
94 participants (28 female), ages 18-58 (µ=34.2) from within 
our institution provided 126 sessions of training data. Ses-
sions averaged 38min, about half of which was “non-exer-
cise” time. Participants were of widely varying fitness levels, 

 

Figure 3: Data collection and evaluation hardware. 



 

 

but some self-selection bias toward higher-than-random fit-
ness levels no doubt occurred; all participants were willing 
to exercise for a study and felt that they could safely com-
plete the exercises. Training data participants were compen-
sated with dining coupons for nearby restaurants. 

We collected data for 26 exercises (Table 1), plus walking 
and stretching. Consequently, no participant could complete 
all exercises in a single session, and the 126 sessions spanned 
four lists of about twelve exercises each, with some overlap. 
The number of collected sets of any exercise ranged from 16 
to 47 (some variation was introduced as participants were al-
lowed to skip or repeat exercises for preference). 

THE RECOFIT SYSTEM 

System Overview 
RecoFit’s input is 6-axis data at 50Hz, which feeds the seg-
mentation stage. The segmenter is essentially a binary state 
machine that indicates whether the user is exercising. Subse-
quent stages do not operate during non-exercise periods. 
When the segmenter detects exercise, it feeds the segmented 
region to the recognition stage, which labels the region with 
a particular exercise type. The data and the label are then fed 
to the counting stage for repetition counting. 

Segmentation 
The “segmentation problem” is summarized in Figure 4, 
which shows an accelerometer trace in the top row; the bot-
tom row indicates when this participant was actually exercis-
ing. Our goal is to infer the blue boxes in the bottom row 
from the raw data in the top row. 

Segmentation can be broken down into four stages: prepro-
cessing, feature computation, classification, and aggregation. 

Segmentation: Preprocessing 
Accelerometer and gyroscope data are smoothed with a But-
terworth low-pass filter (-60dB at 20Hz), then windowed 
into 5-second windows sliding at 200ms (i.e., each 5s win-
dow shares 4.8s of data with the previous window). 

Segmentation: Feature Computation 
Each 5-second window is transformed into 224 features that 
we use to characterize exercise. These features can be de-
scribed as 28 features computed over each of 8 one-dimen-
sional “signals” – also five seconds long – computed from 
the raw accelerometer/gyroscope axes. We will describe 
those 8 signals, then the 28 features that we compute for each 
signal. We use the convention that the X axis of our sensor 
corresponds to the vector along the user’s arm; as discussed 

above, this is the only axis with a known interpretation in 
physical space, because the sensor may rotate arbitrarily 
around the arm due to movement or preference. 

Segmentation signals: 
1) aX: the X-axis accelerometer signal 

2) aXmag: the magnitude of the accelerometer signal at 
each sample, i.e. sqrt(ax2+ay2+az2). 

3) aPC1: the projection of the three-dimensional accel-
erometer signal onto its first principal component. This 
is the movement along the axis that demonstrates the 
most variance within this window, or – anecdotally – the 
most “interesting” rotation of the window. 

4) aYZPC1: the projection of only the Y and Z axes onto 
the first principal component of those two axes. This 
captures movement perpendicular to the arm, which al-
lows us to derive information from the Y and Z axes de-
spite the unknown rotation of the armband. 

Each of these signals is repeated for the gyroscope, yielding 
eight 5-second signals for each window. 

Segmentation features (computed for each signal): 
Our segmentation feature set aims to capture the intuition 
that exercise is usually more repetitive than non-exercise, for 
which we leverage the autocorrelation function, i.e. the 
cross-correlation of a signal with itself. Each value L in the 
autocorrelation is the convolution of a signal with a version 
of itself lagged (shifted) by L samples. If a signal has a strong 
periodic component at frequency f, this will appear as a peak 
in the autocorrelation at lag 1/f. Consequently, the autocor-
relation of white noise shows no peaks at all (no periodicity). 
In practice, autocorrelations of real accelerometer data are 
somewhere in between, and this set of features is intended to 
estimate the periodicity of the signal from the autocorrela-
tion. Representative examples of exercise and non-exercise 
autocorrelations are shown in Figure 5. 

We compute the autocorrelation of each signal, normalize it 
to have value 1 at zero lag, exclude lags less than 0.5s, and 
compute the following five features: 

• Number of autocorrelation peaks (note that this fea-
ture does not vary monotonically with repetitiveness; 
too many peaks is indicative of irregular movement, but 
too few is also consistent with a noisy signal) 

Figure 4: Segmentation overview. The segmenter infers 
exercise periods (bottom) from accelerometer data (top). 

 
(a) (b) 

Figure 5: Autocorrelation samples. (a) Autocorrelation of re-
petitive activity is smooth with prominent peaks. (b) Autocor-
relation of non-repetitive activity is jagged with weak peaks. 



 

 

• Prominent peaks: The number of autocorrelation peaks 
that are larger than their neighboring peaks by a thresh-
old and are more than a threshold lag away from their 
neighboring peaks. In general, more prominent peaks 
are present in exercise than non-exercise. 

• Weak peaks: The number of autocorrelation peaks that 
are within a threshold height of their neighboring peaks 
and are less than a threshold lag away from their neigh-
boring peaks. In general, more weak peaks are present 
in non-exercise than exercise. 

• Maximum autocorrelation value: In general, a higher 
maximum value (other than the initial peak at zero lag, 
which we do not consider) is consistent with exercise. 

• Height of the first autocorrelation peak after a zero-
crossing. 

We also compute 15 features not derived via autocorrelation: 

• RMS: The root-mean-square amplitude of the signal. 
The intuition here is that faster motion is more likely to 
correspond to exercise than non-exercise. 

• Power bands: The magnitude of the power spectrum in 
10 bands spaced linearly from 0.1-25Hz (10 features).  

• Mean, standard deviation, and variance (3 features). 

• Integrated RMS: The root-mean-square amplitude of 
the signal after cumulative summation (which roughly 
takes us from “acceleration” space to “velocity” space).  

Finally, in order to improve the precision of our segmenta-
tion boundaries, we compute the RMS, mean, standard devi-
ation, and variance for the first half and second half of each 
window. This results in a smoother transition in probability 
during windows that overlap the beginning or end of exer-
cise, and a stronger tendency for this probability to cross a 
reliable threshold just at the exercise boundary. This yields 8 
features, bringing the total number to 28 features per signal. 

Segmentation: Classification 
Every 5-second window (200ms step) in our training data is 
labeled “exercise” or “non-exercise” from the ground truth 
information (walking is considered “non-exercise”). For 
each window, we compute these 224 features, and the result-
ing feature matrix is used to train an L2 linear support vector 
machine (SVM) [18], which predicts either “exercise” or 
“non-exercise” for each 5-second window. 

Segmentation: Aggregation 
Even if the classifier is performing well, it is common for 
predictions to disagree with the actual exercise/non-exercise 
state for short periods, e.g. for brief dynamic stretches during 
non-exercise, or pauses in the middle of an exercise. The out-
put of the system should not reflect these brief transitions, as 
they do not match a user’s model of periods of exercise and 
non-exercise. The “aggregation” step smoothes these incon-
sistencies to produce a coherent set of exercise periods.  

Inevitably, this involves trading some amount of latency for 
robustness to these minor inconsistencies. We cannot start 
counting repetitions immediately after the first prediction of 
“exercise”, since it may well be that the aggregation stage 
discovers this was not really the beginning of an exercise. 
Our assumption is that falsely starting counting would be 
disruptive to any user experience. This is not an issue for 
offline operation (e.g. post-workout review). 

We employ an “accumulator” strategy for aggregation. The 
system starts in the non-exercise state, and every time we see 
a prediction of “exercise”, we increment a value (the accu-
mulator). Each time we see a prediction of non-exercise, we 
decrement the accumulator. When the accumulator reaches a 
threshold, the system enters the “exercise” state. This thresh-
old is set to the equivalent of 6 seconds. We maintain a his-
tory buffer, so that when the system enters the “exercise” 
state, it can provide the entire window of exercise to the 
recognition and counting systems. This process is simply 
performed in reverse to detect the end of an exercise. 

Recognition 
Once the segmenter has identified a period of exercise, the 
recognition stage assigns a label to that exercise from a set 
of possible exercises, or “circuit”. A circuit could be any sub-
set of the 26 exercises for which we have training data, 
though accuracy declines with large circuits, and it’s ex-
tremely rare for a workout program to give an exerciser 26 
options at any one time. Consequently, practical use would 
likely involve circuits of four to eight exercises.  

Recognition: Preprocessing 
RecoFit’s recognition stage operates over the same filtered 
data windows described above. There is no inherent reason 
why the filtering or windowing need to match the segmenta-
tion stage, but it provides an implementation convenience (a 
single stream of filtered data can be shared for both stages). 

Recognition: Feature Computation 
Each 5-second window will be transformed into a feature 
vector, as with segmentation. Again, we described the fea-
tures as a set of 20 features computed over each of 3 derived 
signals. The three signals are the aX, aYZPC1, and gPC1 
used above in segmentation. 

Recognition features (computed for each signal): 
• Autocorrelation bins: 5 evenly-spaced bins of the 5-

second autocorrelation – summed per bin (5 features). 

• RMS: The root-mean-square amplitude of the signal.  

• Power bands: The magnitude of the power spectrum in 
10 bands spaced linearly from 0.1-25Hz (10 features). 

• Mean, standard deviation, kurtosis, interquartile 
range (4 features). 

Recognition: Classification 
Features are computed for each window in every training in-
stance of each activity in the circuit; windows that only par-



 

 

tially include an activity are not included. As with segmen-
tation, an L2-SVM is trained on this feature/label matrix; in 
this case, rather than a single binary SVM, a “multiclass 
SVM” (a series of binary SVMs in a most-predictions-wins 
configuration) is trained to discriminate among the activities. 
We train a multiclass SVM for each unique circuit. 

Recognition: Voting  
For an exercise set that lasts 20 seconds, we may have several 
predictions that disagree about which activity is being per-
formed. In an offline context, it is straightforward to take the 
most common prediction over the entire exercise, but this 
does not apply to online use: we assume that it would be con-
fusing to a user if RecoFit predicts “pushups”, then – based 
on a change in the plurality vote – changes its prediction to 
“situps” later in the same set. Therefore, we want to make a 
single prediction and “stick with it”. Empirically, we ob-
served that the first second or two of exercise is often incon-
sistent with the rest of the set, due to rebalancing of weights, 
etc. On the other hand, waiting too long to commit to a label 
comes at a price in latency for real-time applications. There-
fore, for online recognition, we use a single window starting 
three seconds into the set for recognition. For offline appli-
cations, we use the most common prediction over all win-
dows from three seconds to the end of the exercise. We will 
discuss both metrics in our results. 

Counting 
Our counting algorithm assumes we have already performed 
segmentation and recognition, so it depends on the label (e.g. 
“jumping jacks”), and the raw accelerometer data corre-
sponding to an exercise. Empirically, we did not find the gy-
roscope helpful for counting.  

The counting stage itself has two components. First, we pro-
cess the three-axis data into a one-dimensional (1d) signal. 
Second, we count peaks in this signal using the autocorrela-
tion to eliminate peaks that do not correspond to repetitions. 

Counting: Signal Computation 
Our first goal is to extract a 1d signal over which we can 
count repetitions. Ideally, each exercise repetition should 
correspond to a single cycle or peak. 

First, an elliptical bandpass filter (0.15Hz – 11Hz) removes 
high- and low-frequency components. We then subtract the 
mean from the data, apply Principal Component Analysis 
(PCA), and project the data onto its first PC. By projecting 
onto this axis – the axis of highest variation during this exer-
cise – we simplify counting repetitions to the problem of 
counting peaks on a 1d signal. 

Counting: Peak Detection 
Figure 2a highlights an “easy” example: each repetition cor-
responds to a strong peak, all peaks are similar, and peaks 
occur at a constant rate. Counting peaks in this signal is 
straightforward, but few signals look like this. Depending on 
the exercise and the user’s form, there may be multiple peaks 
per repetition (Fig 2b), variation in the repetition rate (Fig 
2c), or variation in peak shape and amplitude (Fig 2d). 

To overcome these difficulties, we use local period estima-
tion to reject peaks that do not correspond to actual repeti-
tions. This approach captures two key intuitions: peaks that 
are significantly “off-schedule” with respect to the current 
repetition rate are likely to be false repetitions, as are peaks 
that are significantly smaller than the typical peaks in the set. 

The method assumes estimates of the minimum and maxi-
mum reasonable times needed for one repetition (minPeriod 
and maxPeriod). For example, it is nearly impossible for a 
situp to take less than 0.75s or more than 4s. 

We first compute a set of candidate peaks (local maxima). 
We sort these peaks based on amplitude and loop through 
this sorted list, accepting a candidate peak so long as it is at 
least minPeriod away from the closest already-accepted 
peak. The intuition here is that if we see two peaks in the 
signal that are very close together (e.g. 200ms apart), one of 
them is not a real repetition of the exercise. 

minPeriod is an estimate of the minimum possible time 
needed to perform one repetition (based on the fastest repe-
tition we’ve ever seen of that exercise), so in most cases it is 
much smaller than the actual repetition time. Consequently, 
we often have multiple candidate peaks per actual exercise 
repetition. We attempt to estimate the actual exercise period 
around each peak, and we use this to refine the set of candi-
dates. Specifically, for each candidate, we compute the auto-
correlation in a window centered on the peak. We find the 
largest autocorrelation value within the range of lags 
[minPeriod,maxPeriod]; the lag corresponding to this value 
is our estimate of the exercise period P for this candidate. We 
repeat the process of sorting and filtering peaks, this time re-
jecting peaks that are closer to neighbors than 0.75*P. 

Finally, we filter remaining candidates using amplitude sta-
tistics. We again sort all of the candidate peaks based on am-
plitude and find the peak at the 40th percentile; we reject all 
peaks smaller than half the amplitude of this peak, which 
nearly always correspond to sub-repetition movements. We 
have found this much more robust than absolute thresholds. 
The number of remaining peaks is our final repetition count. 

Counting: Online Considerations 
We have described this process in the context of counting 
repetitions over a complete window of exercise; in an online 
scenario, we simply keep a buffer of the filtered signal cor-
responding to an exercise and repeat this process every 200 
milliseconds. This window exists only to bound computation 
time; conceptually, we could re-count the entire exercise 
window with each arriving sample (unlike segmentation and 
recognition, which fundamentally require windowing). So 
once an exercise has been recognized, there is no fundamen-
tal latency in counting new repetitions. 

END-TO-END STUDY 
In order to evaluate our complete system, we conducted an 
experiment after all parameters were fixed on the training set. 



 

 

Participants 
We recruited 20 participants (8 female), ages 25-53 (µ=35.1) 
from the area surrounding our institution. Participants varied 
in weight from <115lbs to >350lbs, and although they self-
identified as “exercise at the gym at least once a week”, par-
ticipants were of widely varying fitness levels. 

Procedure 
We created two four-exercise circuits (Table 1) from the ex-
ercises collected during our training data. Each participant 
performed two rounds of one of these four-exercise circuits, 
for a total of eight exercises. Since we wanted to ensure ade-
quate data for segmentation precision/recall analysis, partic-
ipants were asked to take at least 30 seconds between sets, 
and to take a five-minute break between circuits. Prior to the 
session, participants were given a brief overview of the ex-
ercises and were instructed to select weights and repetition 
counts that they could complete safely and consistently. As 
with the training data collection, participants were given a 
wide range of suggested repetition counts (not enforced). 

RESULTS 

Segmentation Results 
In evaluating our segmenter, we define precision as the frac-
tion of predicted exercise sets that correspond to actual exer-
cise, and recall as the fraction of actual exercise sets pre-
dicted as exercise. We further define three notions of preci-
sion and recall: traditional, close, and tight. 

Traditional precision requires only that a predicted set 
uniquely overlap with a ground truth set, i.e. that the seg-
menter said “a set happened here”. 

Close precision requires both boundaries of a predicted set to 
fall within five seconds of the corresponding ground truth. 

Tight precision requires both boundaries of a predicted set to 
fall within two seconds of the corresponding ground truth set. 

Recall levels are defined in the same way. Table 2 presents 
precision/recall values for our study, along with leave-one-
out cross-validation results on our training data (each partic-
ipant’s data was analyzed using a segmenter trained on all 
other participants). In our study, we achieve nearly 98.8% 
precision and recall by the “close” definition, corresponding 
to only two errors. In both error cases, a segmented region 
uniquely matched a ground truth label: one end of the seg-
mented region was within one second of ground truth, but the 
other was off by about six seconds. 

Recognition Results 
Recognition accuracy is assessed in the context of a circuit, 
and inevitably the choice of circuit affects accuracy. A larger 
number of activities or high similarity among activities will 
reduce accuracy. Comprehensive analysis of all possible cir-
cuits is prohibitive, so we present results from the two cir-
cuits used in our study, along with leave-one-out cross-vali-
dation results from our training data for two reasonable cir-
cuits of different sizes, to demonstrate the effect of circuit 
size on accuracy. The circuits are described in Table 1. 

We also note that an offline analysis, e.g. for post-workout 
summarization, can benefit from looking at an entire set be-
fore making a classification; a real-time system is expected 
to provide feedback within a reasonable amount of time at 
the beginning of a set (see “voting” above). Consequently, 
we present both “offline” recognition accuracies (using the 
entire set) and “online” recognition accuracies (using only 
the first 8 seconds of a set). 

Table 3 shows the recognition results from our end-to-end 
study. Only three errors were made in the offline case, all 
three labeled “dumbbell rows” as “biceps curls”, and visual 
inspection confirmed that participants were almost com-
pletely upright during this set, in which case rows and curls 
become almost indistinguishable. Interestingly, two of these 
were classified correctly in the online case, resulting in 
slightly better performance (one error total in 160 sets). 

Critically, recognition results for our study are identical 
whether we use the ground truth boundaries or the automatic 
boundaries produced by our segmenter, confirming that 
recognition is robust to minor errors in segmentation. 

Table 4 shows the same circuits analyzed using leave-one-
out cross-validation analysis on our training data, along with 
the two larger circuits from Table 1. Even with the 13-class 
“large” circuit, post-workout (offline) accuracy is 96.0%. 

Counting Results 
Table 5 shows counting results from our end-to-end study 
and our training data. Using the ground truth activity bound-
aries and labels, counts are within 1 count of correct 97% of 
the time (93% using the automatic segmenter and recog-
nizer). Results for the training data set (Table 5, third row) 
use actual event boundaries, across all 26 activities. 

 Precision Recall 

End-to-End Study 
Traditional 100% 100% 
Close 98.8% 98.8% 
Tight 85.6% 85.6% 
Leave-One-Out (Training Data) 
Traditional 99.1% 98.3% 
Close 91.4% 91.0% 
Tight 86.8% 86.9% 

Table 2: Segmentation Results. 

Study A (4-class) Squat, crunch, pushup, shoulder press 
Study B (4-class) Curl, jumping jack, triceps extension, 

dumbbell row 
Medium (7-class) Squat, curl, crunch, pushup, triceps ex-

tension, dumbbell row, jumping jack 
Large (13-class) Crunch, row, punch, jumping jack, ket-

tlebell swing, triceps extension, pushup, 
rowing machine, Russian twist, back fly, 
shoulder press, squat, curl 

Table 1: Circuits used in our study and cross-validation. 



 

 

DISCUSSION AND FUTURE WORK 

Intensive Strength-Training and Periodicity Breakdown 
One of our core intuitions is our use of self-similarity as a 
segmentation metric. However, self-similarity may break 
down in intensive strength-training scenarios. For this rea-
son, more validation of intensive weightlifting is important 
future work. However, we highlight that we only rely on 
short-term periodicity: if the 10th repetition is different than 
the first, segmentation will not suffer, as long as it’s some-
what similar to the 9th. This addresses the bulk of cases 
we’ve observed, where breakdown from fatigue is gradual. 
Furthermore, our aggregation step allows even a sudden shift 
in form (such as reversing grip) to be handled gracefully, so 
long as self-similarity resumes. 

Such scenarios also may yield exercises longer than our 5-
second windows. This window is tailored to minimize la-
tency, but one may use longer windows for circuits with slow 
exercises, or use a short window in the non-exercise state and 
a longer window when looking for the end of slow exercises.  

Mechanical and Form Factor Considerations 
Our selection of the forearm as a location for our evaluation 
was primarily for experimental reasons: it was easier to de-
velop a prototype that was stable and comfortable for the 
forearm than for the wrist. The wrist, however, is an appeal-
ing target for sensor placement, given the emergence of sen-
sor-rich “smart watches” with the ability to transmit data to 
smartphones for computation, storage, and interaction. An-
ecdotal evidence from a preliminary wrist-based data set sug-
gests that although we will need to train new models for wrist 
data, our approach will translate trivially. 

Interestingly, many runners and walkers choose to keep their 
smartphones in armbands during exercise. This suggests an 
alternative route to deployment: a smartphone already con-
tains the sensors, display, and computation required to run 
the complete RecoFit system as an application. 

Finally, we assume a single inertial sensor, expecting that 
multiple devices would be prohibitively cumbersome for 
some users. However, our techniques generalize naturally to 
more sensor streams, particularly the use of PCA for dimen-
sionality reduction. We expect that sensors on both arms and 

one or more legs would both improve accuracy and enable a 
wider variety of activities – such as leg-centric exercises – 
with straightforward adaptation of our methods. 

User Experience Considerations 
A real-time application leveraging our approach is analogous 
to the “digital running coach” that a GPS device provides to 
a runner, allowing goal tracking and competition. However, 
for real-time applications, even the few seconds of latency 
incurred by our aggregation presents a challenge to making 
a system feel “responsive”, as users expect counting to begin 
immediately. We have explored several mechanisms for ad-
dressing this limitation, for example using animations that 
respond directly to movement, even when the segmenter 
does not detect exercise, analogous to a moving waveform 
used in voice search applications indicate that “the system is 
listening”. Furthermore, the aggregation value itself can be 
surfaced through color and animation to communicate pro-
gress toward detecting exercise. These design issues are crit-
ical to the persuasive and motivational goals of a fitness 
tracking system, and will be explored in future work. 

We have developed a real-time embodiment of RecoFit (see 
video figure), which allowed us to confirm its computational 
feasibility (it runs easily on a phone-class processor or a 
high-end embedded processor) and will enable us to explore 
these important user experience questions. 

Implications for Generalized Activity Recognition 
We conclude our discussion by summarizing three key les-
sons derived from our work that we believe have implica-
tions for sensor-based activity recognition, even outside of 
the exercise space: 

(1) When analyzing periodic signals, the use of independent 
learned models for periodicity identification and activity 
recognition can increase robustness. 
(2) Dimensionality reduction can increase robustness to var-
iation in device placement and behavioral orientation. 
(3) We provide specific novel features to capture self-simi-
larity for human motion applications, relevant to fitness, pe-
dometry, physical therapy, etc. 
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