
 Morris, Joshi - Hyrbrid Rendering - Page 1 of  7

Hybrid Rendering for Interactive Virtual Scenes 
 

Dan Morris, Neel Joshi 
dmorris@cs.stanford.edu, nsj@cs.stanford.edu 

Robotics Laboratory, Department of Computer Science, Stanford University, Stanford, CA 
 
 
Abstract 
 
Interactive virtual environments used in conjunction with haptic displays are often static-
viewpoint scenes that contain a mixture of static and dynamic virtual objects.  The immersive 
realism of these environments is often limited by the graphical rendering system, typically 
OpenGL or Direct3D.  In order to present more realistic scenes for haptic interaction without 
requiring additional modeling complexity, we have developed a technique for co-locating a pre-
rendered, raytraced scene with objects rendered graphically and haptically in real-time.  We 
describe the depth-buffering and perspective techniques that were necessary to achieve co-
location among representations, and we demonstrate real-time haptic interaction with a scene 
rendered using photon-mapping. 
 
 
1. Introduction 
 
The development of high-degree-of-freedom haptic feedback devices has allowed increasingly 
realistic physical interactions with virtual objects.  However, the computational complexity of 
haptic rendering currently limits many haptic environments to simple geometric primitives or 
low-polygon-count meshes (Ruspini et al, 1997).  The realism of these simple environments and 
the sense of physical immersion is thus heavily dependent on the graphic rendering system, 
which is typically OpenGL. 
 
Since most commercially available haptic devices are mounted to a non-mobile base, the virtual 
environment used with these devices is often a static representation of the device’s workspace, 
typically rendered from a single or infrequently-changing point of view. 
 
The need for convincing graphical representations of static-viewpoint scenes suggests raytracing.  
However, interactive raytracing – even for fairly simple scenes – is not widely available (Wald et 
al, 2003).  Furthermore, the computational complexity of real-time raytracing would be 
prohibitively high when coupled with the computational complexity of haptic rendering. 
 
This paper describes a compromise between the interactivity of z-buffering and the detailed 
visual effects provided by raytracing.  We feed a RenderMan scene file (Upstill, 1990) to a 
modified ray tracer that produces depth information along with the final image.  Our system 
them renders the raytraced image as a point-cloud in OpenGL, and uses the original RenderMan 
scene file to place haptic objects in the environment.  Additional objects can be rendered 
graphically in real-time via OpenGL, using the original scene file and a custom projection 
matrix.  The result is a visuo-haptic environment that leverages the realistic graphical effects 
available via raytracing. 



 Morris, Joshi - Hyrbrid Rendering - Page 2 of  7

 
 
2. Methods 
 
Our system consists of two independent software modules.  The first module is a modified 
raytracer that exports depth information for each pixel.  The second module is a real-time 
rendering system that displays the output of the raytracer, renders additional objects in OpenGL, 
and provides a haptic representation of the raytraced scene. 
 
FIGURE 1 provides an overview of the system’s architecture. 
 

 
2.1. Raytracing 
 
In order to extract depth information with a raytraced image, we modified the LRT raytracing 
system, provided in source form with the preliminary manuscript of (Pharr and Humphreys, 
2003).  LRT reads RenderMan .rib files and generates standard image files in .tiff or .jpeg 
format. 
 
We modified LRT to recognize a custom .rib file option that requests an additional output file in 
addition to the final image.  This file is an ASCII table that provides a depth value for each pixel 
in the image.  Depth values are obtained by casting a ray from the viewpoint through each pixel 
on the film plane and determining the distance along each ray at which the nearest object is 
intersected.  These are the same intersections that are used for generating pixel color in the final 
image. 
 
The exported depth values thus represent positive distance from the camera, in the same units 
used to describe object and camera locations in the original scene description. 
 
2.2 Graphical rendering 
 
We developed a software package that reads the output files from LRT and renders each pixel in 
the raytraced image as an OpenGL point.  The system sets the OpenGL viewport to be the same 

.rib scene file LRT
(raytracer)

.tiff image file

ASCII depth
file

OpenGL
rendering

haptic
rendering

perspective correction information

static object location

FIGURE 1: A schematic representation of the rendering system’s architecture



 Morris, Joshi - Hyrbrid Rendering - Page 3 of  7

size as the input image, to ensure that each input pixel maps to exactly one pixel on the real-time 
display.  Because perspective correction and lighting effects have already been applied by the 
raytracer, it is necessary to render the pixels orthographically, with OpenGL lighting disabled.  
Thus, when rendered with no other objects in the scene, the OpenGL representation of the 
raytraced points will be an exact replica of the .tiff file output by the raytracer. 
 
The system also allows other objects to be rendered graphically in the scene, along with the 
raytraced point-cloud.  The goal of the system is to provide the illusion that these objects – which 
are dynamically rendered in real-time – are part of the raytraced scene.  Thus OpenGL objects 
must be rendered with appropriate perspective correction, and they should occlude or be 
occluded by appropriate points in the point cloud. 
 
In order to achieve appropriate perspective correction, the system reads the original scene file to 
determine the field-of-view angle used to generate the raytraced image.  Objects are then 
rendered in OpenGL using a standard perspective projection matrix, initialized with the OpenGL 
function gluPerspective( ). 
 
The values written to the depth buffer after OpenGL vertices are transformed through this 
projection matrix do not represent distance from the eyepoint.  Rather, the depth buffer typically 
represents a nonlinear function of eyepoint-distance, intended to maximize precision in the range 
of distances near the eyepoint.  The precise mapping of eyepoint distance zeye through the 
projection matrix defined by gluPerspective( ) or similar functions is: 
 

*
2transformed eye

zFar zNear zNear zFar
z z

zFar zNear zFar zNear
+

= −
− −

 

 
…where ztransformed is the resulting depth value that is passed on to the viewport transformation, 
zFar is the location of the far clip plane, and zNear is the location of the near clip plane. 
 
The orthographic projection matrix used to render the point cloud is initialized using the 
OpenGL function gluOrtho2D( ).  However, this projection matrix produces depth buffer 
values in an entirely different range than those generated by the gluPerspective( ) 
transformation.  Therefore, in order to force objects rendered in real-time to properly occlude and 
be occluded by raytraced points, it is necessary to modify this orthographic projection to produce 
depth buffer values that line up with those generated by the perspective transformation. 
 
Specifically, we “manually” perform the above transformation on each pixel’s depth value as it 
is read from the ASCII depth table produced by the raytracer.  Thus the depth coordinate 
associated with each pixel is exactly what should be fed to the viewport matrix to ensure a proper 
comparison against the polygons rendered in real-time.  In other words, we have pre-transformed 
each point’s z-coordinate, so we want our orthographic projection matrix to transform only x and 
y, and not z.  Therefore, we explicitly modify the standard gluOrtho2D( ) projection matrix as 
follows before rendering our point cloud. 
 
The immediate output of gluOrtho2D( ) : 
 



 Morris, Joshi - Hyrbrid Rendering - Page 4 of  7

 
2

0 0

2
0 0

2
0 0

0 0 0 1

right left
right left right left

top bottom
top bottom top bottom

zFar zNear
zFar zNear zFar zNear

+ − − − 
+ − − − 

 − +
− − −  

 

 

 
 
…is modified to… 
 
 

2
0 0

2
0 0

0 0 1 1
0 0 0 1

right left
right left right left

top bottom
top bottom top bottom

+ − − − 
+ − − − 

 
  
 

 

 
 
…where right and left are locations of the horizontal clipping planes, top and bottom are the 
locations of vertical clipping planes, and zFar and zNear are the locations of the near and far 
clipping planes. 
 
Note that the modified projection matrix does not operate on the z-coordinate of each input 
vertex at all, so the correct depth values – computed “manually” for each raytraced point when 
processing the input file – are passed directly to the viewport transformation.  Thus the objects 
rendered dynamically in OpenGL with a standard perspective projection “line up” correctly with 
the points generated by the raytracer, which are rendered orthographically. 
 
The system also reads the positions of light sources from the scene file, to place OpenGL lights 
in the corresponding positions.  Therefore, although much more sophisticated lighting effects are 
available for raytraced objects, the lighting of dynamically-rendered objects appears 
approximately correct in the scene. 
 
 
2.3 Haptic rendering 
 
This project was motivated by environments that are common to haptic rendering environments, 
so it was critical to include co-located haptic rendering in our application.  The system parses the 
.rib file that was used for raytracing and extracts the locations of all polygons.  These polygons 
are tessellated and rendered haptically as rigid triangles. 



 Morris, Joshi - Hyrbrid Rendering - Page 5 of  7

 
A dedicated thread reads the position of a haptic input device – either a SensAble Phantom 
(Massie and Salisbury, 1994) or a Force Dimension Delta (Grange et al, 2001) – and transforms 
the input device position into a device-independent range that is consistent with the location of 
polygons in the rendered scene.  The gain of this transformation – which controls the “physical 
size” of the scene – can be set arbitrarily.  The haptic thread continuously tests for penetration of 
any of the polygons extracted from the scene file, and generates forces to oppose any penetration 
of scene file objects.  This is a standard technique used for haptic rendering of rigid surfaces 
(Salisbury et al, 1995). 
 
The position of the haptic device is also rendered as an OpenGL sphere in the scene using the 
techniques described above.  The result is that forces are generated when the visual 
representation of the device intersects raytraced polygons, and the user has a sense of physical 
interaction with raytraced objects. 
  
 
2.4 Development notes 
 
LRT development was done in Linux using GNU development tools. 
 
Our rendering application runs in Windows, and was developed using Visual C++, MFC, 
OpenGL, and the SensAble Ghost API for haptic rendering. 
 
 
3. Results 
 
As a demonstration of the system’s capabilities, we raytraced the classic “Cornell Box” (Goral et 
al, 1984) using photon-mapping (Wann Jensen, 1996), an effect not achievable in real-time, and 
read the corresponding scene file into our system.  FIGURE 2 contains a screenshot of our running 
application.  Note that the blue sphere – representing the current position of the haptic device – is 
rendered in real-time, but appears to be located between raytraced objects.  Also note that the 
specular highlight on the sphere appears to be the result of a light source that is at the location of 
the light source in the raytraced scene. 
 
A more convincing demonstration of occlusion and perspective transformation requires video, 
and a video of the sphere moving around in the scene can be viewed at : 
 
http://robotics.stanford.edu/jks-folks/hybrid.rendering/ball.in.box.rm 
 
 
 
 
 
 



 Morris, Joshi - Hyrbrid Rendering - Page 6 of  7

  

FIGURE 2: A screenshot demonstrating an OpenGL object rendered among raytraced points. 
 
 
4. Conclusion 
 
4.1 Applications 
 
We present a novel technique for aligning pre-rendered scenes with objects rendered in real-time.  
This is significantly more powerful than simply texturing complex images onto polygons in an 
OpenGL scene, since it allows occlusion among objects rendered in OpenGL and objects 
rendered offline. 
 
We also demonstrate a potential application of this technique by allowing a user to haptically and 
graphically interact with raytraced objects in real-time.  We expect that this will be a valuable 
approach to demonstrating and exploring potential applications of haptic environments. 
 
 
4.2 Future work 
 
In order to increase the degree to which dynamically-rendered objects are truly interacting with 
raytraced objects, we would like to incorporate real-time shadow-casting.  Since we have the 



 Morris, Joshi - Hyrbrid Rendering - Page 7 of  7

location of the light source and the original polygons, it would be possible to cast projective 
shadows onto those polygons and render translucent polygons that would partially occlude the 
point cloud.  The effect would be real-time shadowcasting onto raytraced objects. 
 
Additionally, we would like to extend this work to allow haptic annotations (roughness, rigidity, 
etc.) among the material properties specified in the original .rib file.  This could be the basis for a 
scene file format that describes both haptic and visual properties of rendered objects. 
 
  
References 
 
Goral C.M., Torrance K.E., Greenberg D.P., and Battaile B.  “Modeling the interaction of light 
between diffuse surfaces.”  Proceedings of the 11th Annual Conference on Computer Graphics 
and Interactive Techniques, 1984. 
 
Grange S, Conti F, Helmer P, Rouiller P, and Baur C.  “`Overview of the Delta Haptic Device”.  
Eurohaptics '01, Birmingham, England, July 2001. 
 
Massie T.H. and Salisbury K. The Phantom Haptic Interface: A Device for Probing Virtual 
Objects. In Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interface 
for Virtual Environments and Teleoperator Systems (Chicago, IL), 1994. 
 
Pharr M and Humphreys G.  Physically Based Rendering: Design and Implementation of a 
Rendering System.  2003 (unpublished manuscript). 
 
Ruspini D.C., Kolarov K, and Khatib O.  “The Haptic Display of Complex Graphical 
Environments.”  Computer Graphics Proceedings, Annual Conference Series, 1997. 
 
Salisbury K, Brock D, Massie M, Swarup N, and Zilles C. “Haptic Rendering: Programming 
Touch Interaction with Virtual Objects.”  Proceedings of the 1995 Symposium on Interactive 3D 
graphics. 
 
Upstill S.  The RenderMan Companion: A Programmer's Guide to Realistic Computer Graphics.  
1990. 
 
Wald I., Purcell T.J., Schmittler J, Benthin C, and Slusallek P.   “Realtime Ray Tracing and its 
use for Interactive Global Illumination.”  Eurographics State of the Art Reports, 2003. 
 
Wann Jensen H.  “Global Illumination using Photon Maps.” In “Rendering Techniques ‘96”, 
1996. 


