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ABSTRACT 
Recent work has shown that the body provides an interest-
ing interaction platform. We propose a novel sensing tech-
nique based on transdermal low-frequency ultrasound prop-
agation. This technique enables pressure-aware continuous 
touch sensing as well as arm-grasping hand gestures on the 
human body. We describe the phenomena we leverage as 
well as the system that produces ultrasound signals on one 
part of the body and measures this signal on another. The 
measured signal varies according to the measurement loca-
tion, forming distinctive propagation profiles which are 
useful to infer on-body touch locations and on-body ges-
tures. We also report on a series of experimental studies 
with 20 participants that characterize the signal, and show 
robust touch and gesture classification along the forearm. 
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INTRODUCTION 
We propose a novel on-body touch and gesture sensing 
technology based on active ultrasound signal transmission. 
It provides rich contextual information of on-body touch 
and gesture such as: 1) continuous indication of touch or 
gesture presence, 2) continuous localization of touch (po-
tentially supporting slider-like interaction), 3) pressure-
sensitive touch (potentially supporting a touch-and-click 
event), and 4) an arm-grasping hand gesture (Figure 1). 

This paper highlights an active system with transducers that 
resonate the skin surface with low-frequency ultrasound and 
a receiver that measures the signal at some other point on 
the body. Significant portions of the signal actually trans-
form into a surface wave when placed in perpendicular con-

tact with human skin (Figure 2). Complex body properties 
such as muscle mass, geometry, and bone structures attenu-
ate the signal in relatively distinct ways and provide reason-
ably good signal differentiation. We measure the received 
signal at a multitude of frequencies. Our proposed sensing 
principle is by nature able to continuously detect touch and 
gestures, by which we mean that – unlike previous work – 
we can detect both the onset and offset of a touch event. We 
can also continuously sense the location of a touch event, by 
measuring the signal amplitude, which degrades as the func-
tion of the distance between the transmitter and receiver. 
When pressing harder against the skin, the amplitudes of the 
measured signal dramatically increases across our transmit-
ting frequencies (in contrast to more subtle changes related 
to location), therefore applying an adaptive threshold is 

 
Figure 1. We proposed a novel on-body touch sensing method 
based on transdermal ultrasound propagation, and we ex-
plore the design space using two exemplary sensor configura-
tions: (a) A wearable transmitter/receiver pair to detect loca-
tion, duration, and applied pressure. (b) One armband that 
combines the transmitter and receiver to detect hand-
grasping gestures. This method can be immediately useful in: 
(1) information access and user input for the visually im-
paired; (2, 3) user input for users with limited access to an 
input device. 
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sufficient to sense changes in pressure. To sense more com-
plex on-body touch and gesture events such as discrete 
touch location sensing and hand gesture sensing, we lev-
erage the feature-distinctive propagation profile of the 
measured signal, and then use machine learning classifica-
tion techniques. 

One crucial factor in instrumenting the body to add touch 
and gesture is to make the sensing hardware configuration 
as simple and as minimally intrusive as possible. Our pro-
posed sensing method requires as few as two ultrasound 
transducers acting as transmitter and receiver to be in per-
pendicular contact with the skin. Furthermore, both of the 
transducers can be implemented with low-profile sound 
cards already existing in popular handheld devices, such as 
smart phones and music players. The sensing unit is also 
safe, low-power, and inexpensive in both hardware and 
software cost. 

The sensing technology presented is effective for various 
body parts. Users may attach the designated active signal 
transmitter and the receiver on their area of interest to add 
touch and gesture sensitivity. In this work, we focused our 
sensing experiment on the forearm, considering user con-
venience and affordance of the supported interaction modal-
ities. However, our signal propagation experiments suggest 
that the sensing method could be extended to various body 
parts. Hence the potential input space is more diverse than 
what could be achieved with e-textiles, finger tap body 
acoustics [6], or capacitive sensing [14]. Despite past re-
search exploring feasibility of using ultrasound range sen-
sors propagating through air and hitting the forearm [7], we 
are not aware of previous work exploring on-body propaga-
tion of the signal for touch and gesture interaction.  

The specific contributions of this paper are: 

1) Proposal of novel on-body touch and gesture sensing, 
using ultrasound signal transmission and acquisition. 

2) Description of a wearable system to demonstrate the 
usability and reliability of the proposed method. 

3) Presentation of results from a series of experiments 
aimed at profiling on-body ultrasound wave propaga-
tion as well as exploring the capabilities, robustness, 
and limitations of the system. 

4) Description of the interaction design supported using 
the proposed method. We also note on-body sensor-
mounting options for specific interaction modality. 

RELATED WORK 
Recently, multiple researchers have explored using weara-
ble sensors that measure signals passing through the human 
body to turn it into the core interaction device. For example, 
researchers have studied approaches leveraging electromag-
netic (EM) propagation on the human body to create Per-
sonal Area Networks [21] as well as their uses in HCI work 
[22]. Cohn et al. [2, 3] leverage power-line noise picked up 
by the human body acting as an antenna to recognize 
touched locations on uninstrumented walls. Saponas et al. 

[13] demonstrated the feasibility of classifying tapping and 
lifting gestures across all five fingers by sensing the signals 
of muscle activation through electromyography (EMG). 
This approach typically requires high-cost amplification 
systems and is limited to finger gestures. Our sensing 
method utilizes cheap ultrasound transducers and can be 
applied to various body parts, and senses a wider interaction 
area with the sensor placed on the forearm. Sato et al. pro-
posed Touché [14], which leveraged swept frequency ca-
pacitive sensing to add touch and gesture sensitivity to an 
object with a single electrode. While this work also notes 
the feasibility of the sensing method to be deployed on the 
human body, the supported touch gestures are limited to 
body parts that meet the requirements of spatial separation 
between the source and sensor electrodes (such as between 
fingers in different hands). Therefore, more detailed interac-
tion on the user’s forearm offering more affordable and 
subtle interactions are missed. Our sensing method further 
adds the possibility to sense continuous touch location 
(slider), touch pressure, and arm-grasping gestures. 

Point Upon Body (PUB) [7] and SonarWatch [8] proposed a 
method to explore human factors with respect to how users 
can interact with their forearms, and explored the design 
space using an ultrasound rangefinder to detect finger-
tapped positions on an arm based on the time of flight of 
air-propagated ultrasound. This setup is limited to sensing 
distances roughly along a single direction, and requires line 
of sight from the sensor. In contrast, our method is based on 
transdermal propagation that allowed us to enable touch 
sensing for positions surrounding the arm, as well as pres-
sure-sensitive touch and hand-grasp gesture sensing. Take-
mura et al. [18] reported their early work on the usage of 
active signal injection (bone conduction sound at 800 Hz), 
but measure only elbow angle. 

In separate work, Harrison et al. present Skinput, a system 
that utilizes passive bio-acoustic sensors placed on the body 
to detect the presence and locations of taps on the body [6]. 
This system relies on the fact that these taps generate low-
frequency signals that propagate through the body and 
“sound” quite different depending on the composition of 
body parts they pass through on the way to the sensor. 
While it was interesting to conceive of interfaces that utilize 
the body as a tap surface, our work attempts to extend the 
capabilities of Skinput to sense temporally and spatially 
continuous touch points, adding gesture sensing capability, 
and to sense touch on a larger range of body parts. 

In early explorations, we found that low-frequency (be-
tween 20 and 100 kHz) ultrasound propagated quite well 
through the human body, but in a non-uniform manner that 
might allow us to differentiate touches. In fact, medical 
researchers have shown that low-frequency ultrasound is 
effective in enhancing transdermal transport of various mol-
ecules [1, 10, 11, 16, 17, 19]. Within this work, they have 
demonstrated that the frequencies around 40 kHz have ex-
cellent transdermal propagation with minimal heating [17]. 



 

Currently, we are not aware of previous attempts to exploit 
transdermal ultrasound propagation in designing on-body 
touch and gesture sensing.  

TRANSDERMAL ULTRASOUND PROPAGATION 
When ultrasound energy penetrates the body tissues, biolog-
ical effects can be expected to occur if the tissues absorb the 
energy [20]. As illustrated in Figure 2, we leverage the sur-
face mechanical wave of low-frequency ultrasound. Conse-
quent with Surface Acoustic Wave (SAW) phenomenon [9], 
when a sound wave traveling through a medium encounters 
a boundary with a dissimilar medium that lies perpendicular 
to the direction of the wave, a portion of the wave energy 
will be reflected (with some portions transforming into a 
surface wave) and a portion will continue straight ahead 
(forming a shear wave). The percentage of reflection versus 
transmission is related to the acoustic impedances of the 
two materials. In the case of a boundary between aluminum 
(acoustic impedance of 40.6 to 45.7) and human skin (1.53 
to 1.68) [12], the calculated reflection coefficient is 92%. 
Consequently, in our studies, we put ultrasound transducers 
in direct perpendicular contact with the skin. 

Exciting the skin with ultrasound produces a surface wave 
whose signal strength depends on the transmission power; 
more transmission power allows a larger sensing area. The 
non-EM nature of the signal also adds to the reliability of 
the sensing result compared to capacitive-sensing-based 
approaches such as Touché [14], which are highly affected 
by whether user’s body is connected to ground, or whether 
there are noise sources in the surrounding environment. 

IMPLEMENTATION 

Sensor Design 
We chose to work near 40 kHz for a number of reasons. 
First, it is inaudible. Second, there is very little ambient 
noise in the environment in this range, as energy is lost rela-
tively rapidly as waves propagate through air. Third, these 
frequencies are already popular for tasks like range sensing, 
and many low-powered, cheap commodity transducers exist 
on the market. In fact, transducers with a center frequency 
between 25 and 60 kHz cost less than US$1 each. 

For our prototype, we used 14 mm diameter aluminum 
housing transducers with a center frequency of 40 kHz. 

Each of these transducers was set to a power output of 0.2 
W, and we used the stereo I/O from a computer’s sound 
card to drive them. It would be relatively easy to embed the 
system into a smaller device using smaller form-factor ul-
trasound sensors (e.g. surface-mount devices) and substitut-
ing the signal-processing unit with a general-purpose micro-
controller and analog-to-digital converter (ADC). This 
would allow the entire sensing unit to be embedded on a 
mobile/handheld device. 

In our approach, preventing the receiver from catching the 
signal propagated through the air is highly important, be-
cause it will affect the robustness of the system. Fortunately, 
there is less noise in the low-frequency ultrasound range; 
reflection and/or refraction from the transmitters are highly 
unlikely to disperse through the air, due to the nature of our 
mounting design (perpendicular skin contact). We used 
sealed, waterproof ultrasound transducers to provide an 
acoustic pathway between the transducer and the skin. This 
method minimizes any air coupling and adapts the contours 
of the probe to the skin. While we could have further en-
hanced this coupling by using sonic conduction gel, we 
chose not to as we do not believe this is practical in real-
world scenarios. 

Based on early trials, we applied 10 V RMS driving voltage 
and a sound pressure level (SPL) of 20.4 dB. The transmit-
ter’s SPL was measured at the center part of the transducer. 
Canada, Japan, Russia, and the International Radiation Pro-
tection Agency recommend safe levels of 110 dB SPL 
ceiling operation for frequencies from 25 to 50 kHz [15]. 
Therefore, our signal is significantly below this threshold. 

To sample the signal seen by the receiver, we also used the 
same conventional computer’s sound card, which has a 
sampling rate of 192 kHz at 24-bit precision. The Nyquist 
frequency was 96 kHz, which provided enough headroom 
for our designated transmitting frequency. This kind of au-
dio codec chip has been widely used in PC motherboards, as 
well as high-end mobile audio players and mobile phone; 
therefore, deploying both the transmission and reception 
parts of our approach should be relatively easy.  

Sensor Configurations 
There are many sensor configurations possible using our 
sensing approach. In this paper, we narrowed our explora-
tions down to two basic sensing configurations based on the 
usability and the contextual information we hoped to 
achieve. First, we formed a wearable pair, consisting of 
armband mounted ultrasound transmitters and a ring-
mounted receiver (Figure 3). We hypothesized that the spa-
tial mapping between the transmitters and body parts with 
its complex geometry would exhibit variance in signal 
propagation, helpful in disambiguating touch location (Fig-
ure 8 shows our varied signal reading). In this configuration, 
user can perform interactions (as described in Figure 1a) on 
the body part that is attached to the transmitter with the 
minimally intrusive ring-mounted receiver.  

 
Figure 2. The properties of ultrasound signal propagation 
along the skin. A transducer placed perpendicular to the 
skin results in surface wave propagation. 



 

The second configuration is a combination of transmitters 
and receivers in a single armband (Figure 4). We aimed to 
recognize simple arm-grasping gestures (as illustrated in 
Figure 1b), while alleviating the need for finger-mounted 
receiver. Since these gestures displace external tissues and 
form different acoustic paths, we believed we could sense 
meaningful signals with only a single armband.  

While the separate mounting requirement seems cumber-
some, in the future, transmitters may be embedded into var-
ious accessories people are already wearing (wristwatches, 
sport armbands, headsets, or clothes). On the other hand, the 
receiver is by default embedded in a minimally-intrusive 
ring form factor for finger touch, but may also be embedded 
in other everyday devices such as pens or mobile phones for 
using them as a pointing tool on the body.  

EVALUATION 
We used aforementioned sensing configurations and con-
ducted a set of controlled experiments to profile the signal 
propagation through various body parts, as well as to evalu-
ate the performance and robustness of our system. 

Participants 
We recruited 20 participants (6 female), divided into two 
groups. The first group of 10 participants (2 female) com-
pleted our first three studies. They were 25 to 35 years old, 
165 to 180 cm tall, and weighing between 54 and 85 kg. 
Participant’s Body Mass Index (BMI) ranged from 18.69 
(normal-underweight) to 28.73 (obese as defined in Asia, 
where the work was conducted), with an average of 21.56 
(SD=3.27). A second group of 10 participants (4 female) 
completed the 4th study of arm grasping gesture recognition. 
They were 21 to 28 years old, 159 to 178 cm tall, with BMI 
from 15.64 to 23.82. 

The data collection was distributed over approximately 5 
days span for the first group, and 7 days span for the second 
group. The time span adds the real-world parameters varia-
tion, such as temperature and humidity. The diversity of 

heights and body types was important so that we can appro-
priately generalize the results. 

Study 1: Measuring Signal Propagation on Body Parts 
The first experiment examined the profile of on-body ultra-
sound propagation, and to gain the profile of which body 
parts possess consistent signal amplitude deterioration that 
may further be utilized to detect spatially continuous touch 
gesture along the skin (e.g. potentially used as slider). Fur-
thermore, we demonstrate effects of the applied pressure on 
the receiver’s signal. 

Procedure 
In this study, we aimed to generally characterize trans-
dermal ultrasound propagation; therefore we transmitted a 
single 40 kHz of sinusoidal ultrasound signal when the 
transmitter unit was placed on the following extensive body 
parts selection (with summaries of why each was selected): 

• Forearm: anterior (body part #1) and posterior (#2). 
Large and convenient interaction surface. 

• Upper arm: anterior (#3) and posterior (#4). Large and 
convenient (sports armband mounting strategy). 

• Forehead (#5). Boney part of human body with rela-
tively large area (headphone mounting strategy). 

• Back-of-neck (#6). Collar mounting strategy. 
• Foot: anterior (#7). Profiling uniformed boney structure. 
• Foot: posterior (#8). Profiling firm muscular structure. 

We measured the signal amplitude with the finger-mounted 
receiver; by subsequently perform skin touch at 5 cm, 10 
cm, and 15 cm away from the transmitters, as well as no 
skin touch (no contact between skin and receiver). 

For body parts where armband transmitter mounting was 
difficult (such as forehead and back-of-neck), we used a 
single transducer acting as a transmitter placed perpendicu-
larly on the skin surface; e.g. position near the ear on back-
of-neck, and position above the eye on forehead. 

The participants were seated in a conventional chair while 
the experimenter measured the received signal at the desig-

 
Figure 3. Wearable pair configuration: 4 ultrasound trans-
mitters mounted on an armband; and a receiver mounted on 
a ring. We separate transmitters based on frequency. 

 
Figure 4. Combination of transmitters and receivers in an 
armband. Using this configuration, system complexity is 
reduced and allows direct interaction between user’s hands. 



 

nated position (transmitter and receiver placement was 
consistent across participants). The experimenter also con-
trolled touch pressure application. See Figure 5 for sensor 
configuration and on-body sensor placement example. 

Results 
We calculated the average signal power across participants 
for each measurement position. The results are compiled in 
Figure 6. We measured the propagation along the skin, with 
attenuation based on distance. We also compared the propa-
gation for different body parts where fleshy parts of the 
body tend to propagate the signal better than boney parts. 
Also, body parts with firm muscular volume seem to propa-
gate the signal better, as experiment results show that the 
posterior side of forearm yield significantly higher ampli-
tudes than the associated anterior areas. 

Back-of-neck and forehead measurement results were par-
ticularly interesting due to the inconsistency of the correla-
tion between distance and amplitude. In the back-of-neck, 
amplitude counter-intuitively increases with distance from 
the transmitter, while forehead exhibited slight amplitude 
decrease for measurement position near the center of the 
forehead. These phenomenon were actually consistent with 
the underlying physics on transdermal ultrasound propaga-
tion, where a portion of the signal will form surface wave 
that propagates along the skin, and another portion will 
form shear wave, which exhibit reflections from the muscu-
lar tissue underneath the skin, thus affect signal amplitude 
on circular measurement positions (i.e. neck and forehead). 
These results encouraged us to adopt machine learning to 
sense on-body touch on radial positions of the body, where 
the signal amplitude often do not decrease with distance 
from the transmitter. 

To check the effects of BMI in signal propagation, we 
divide our participants into two groups, participants with 
BMI over or below 23 (borderline for normal to over-
weight/obese). The group with higher BMI exhibited weak-
er signal, especially for positions such as forearm and upper 
arm. However, signals were present in all. As an example of 
the measurement results regarding to the BMI effects, we 
compiled forearm and upper arm signal propagation results 
in Figure 7. 

In explorations on the effects of the applied touch pressure, 
we found that the signal amplitude increased considerably 
when pressing the receiver harder against the skin. This 
could potentially be leveraged as a click signal. This contex-
tual information will further enrich the usability of skin as 
an interactive surface that also pressure sensitive. 

Study 2: Space-domain Continuous Touch Position and 
Touch Pressure Detection 
To achieve space-domain continuous touch sensing, we 
leverage the measured signal amplitude that generally de-
grades as the function of the distance from the transmitter. 
When pressing harder against the skin, the amplitudes of the 
measured signal significantly increased across all of our 
transmitting frequencies (in contrast to more subtle and 
non-uniform change in spatially continuous touch events). 
We further apply adaptive threshold to sense these events. 

 
Figure 6. Signal propagation results for various body parts. 
Note the deterioration of the signal according to the distance. 
Error bars show standard deviation. 

 
Figure 5. Experiment scene using wearable pair configura-
tion (study 1, 2, and 3). 

 
Figure 7. Signal propagation results on forearm and upper 
arm for participants with BMI over and below 23. Note that 
overall the group with higher BMI exhibited weaker signal, 
except posterior side of upper-arm where the effects of firm 
muscular volume were considered more significant than BMI 
effects. Error bars show standard deviation. 



 

Based on the results of our prior study and potential interac-
tion application, we focused on the forearm as it showed 
consistent deterioration of the measured signal amplitudes, 
and its convenience for providing interaction affordance 
[6,13]. 

Procedure 
We adopted the same sensing configuration as our previous 
study, using wearable pair of transmitter and receiver trans-
ducers (Figure 3 & 5). However, in this study the transmit-
ters are injecting 4 transmitting frequency (35, 40, 45, and 
50 kHz of sinusoidal wave) on the user’s forearm. The us-
age of multiple transmitting frequencies enriches the feature 
set usable for inferring touch and gesture, because different 
frequencies propagate differently [6], thus different fre-
quency response profiles are created at different positions 
(Figure 8). 

Participants were asked to perform four gestures: 1) Con-
tinuously sliding the ring-mounted receiver away from the 
transmitter and 2) towards the transmitter, and 3-4) are 
same gestures as 1 and 2 but with considerable pressure 
applied. Each participant performed 5 rounds of the desig-
nated 4-gesture set. Each gesture’s signal is automatically 
detected and segmented, with one-second-gesture window 
length. 

Results 
Averaged across participants, our real-time adaptive thresh-
old correctly detects 98.21% (SD=4.52, chance=25%) of the 
aforementioned gestures. This provides evidence that by 
simply observing the behavior of amplitude spikes across 
the designated frequencies, our system is able to reliably 
detect sliding and pressing gestures. 

Interactive study: mapping for continuous gestures 
We conducted a study on event mapping for our spatially 
continuous touch sensing. We aim to clarify the usability of 

the system to perform interactive sliding gestures. In this 
study, we used the same gesture recognition frameworks as 
the prior study. However, instead of performing post hoc 
cross-validation, we mapped the following gestures to real-
time interactive events: moving away from or closer to the 
transmitter mapped to sliding events (forward or backward 
respectively, where sliding velocity depends on moving 
speed), and pressing gesture (without slide) mapped to se-
lection event. 

We designed a simple GUI of a sliding menu with 11 se-
lectable items (as shown in Figure 11). Participants were 
seated in front of a computer displaying the GUI, while 
instructed to select 5 randomly assigned items, by perform-
ing pressing gesture to confirm selection events. In the be-
ginning of the experiment and after each selection event, the 
menu was designed to slide back to middle (6th) item. 

We gain an average successful select rate of 92%, with an 
average selection time of 2.28 seconds (to select one item 
within 11 selectable menu). This result seems encouraging 
to design real-time application for on-body interactions. 

Study 3: Discrete Touch Position Classification 

Position Set for Classification 
We selected 7 classification sets from the multitude of pos-
sible test position combinations (Figure 9). These represent 
logical sets of locations on the forearm, and test the limit of 
our sensing and classification capability. All of classifica-
tion sets below include no-touch gesture. 
1. 3 Positions (palm, and back-of-palm) 
2. 4 Positions (3 positions along the anterior) 
3. 5 Positions (4 positions surrounds the wrist) 
4. 5 Positions (4 positions surrounds middle part) 
5. 9 Positions (4 positions along the anterior and posterior) 
6. 9 Positions (4 positions along the sides of anterior and 

posterior) 
7. Gesture and no-gesture segmentation across all classifi-

cation sets  

In a recent study conducted by Lin et al. [7], users were 
generally able to distinguish up to 6 points in eyes-free situ-
ations. We expect in scenarios where visual attention is al-
lowed users can achieve higher resolution, thus we experi-
mented with above resolutions. Our sensing method also 
allows radial sensing, i.e. sensing positions surrounding the 
arm, not limited to a single side along the arm. 

Procedure 
Participants were seated in a chair in front of a desktop 
computer showing the experiment steps and directions, as 
well as visualization of the signals (Figure 5). The armband 
was adjusted to ensure good contact between the sensor and 
the skin. The armband was placed on participant’s non-
dominant arm, and measurements were done with partici-
pant’s dominant hand. Similar to study 2, transmitter fre-
quencies were adjusted to 35, 40, 45, and 50 kHz in sinus-
oidal wave, configured as wearable pair (Figure 3). Using 
this configuration, we were able to aggregate richer feature 

 
Figure 8. Signal captured from a participant during (a) no-
gesture, (b, c, d) touch gesture on positions along the fore-
arm gradually away from transmitter. Our signal visualiza-
tion highlighted raw signal, spectrum (nearby 40 kHz), and 
it’s linear average. Transducer’s center frequency of 40 kHz 
is highlighted in red. Note the variance of the signal meas-
ured in different locations, which forms the basis of our 
classification approach. 



 

set by leveraging the variability of the frequency response 
profiles created at different positions, as well as spatial sep-
aration between transmitters. 

To calculate the classification accuracy for various condi-
tions, we ran five-fold cross-validations. Each fold con-
sisted of a single round through all measurement positions 
in the classification set. Each was separated by several 
minutes to avoid the possibilities of over-fitting. We pick 
one round as test, and use the rest (four other rounds) as a 
training set. We repeat this condition for each round (fold), 
and we aggregate our classification results. 

Signal Processing and Classification 
To train the system, we collected 100 samples (a sample 
consists of the averages for every FFT bin in a 25 ms win-
dow) for each position. Samples were separated by 2 ms. 
Including software overhead, sample collection for each of 
the locations took about 3 seconds. 

We calculated a 2048-point FFT, resulting in 1024 spectral 
samples with 93.75 Hz frequency resolutions, to which we 
applied a Hamming window for smoothing. We generated 
120 features for each sample. Our features are inspired by 
previous work on bio-acoustics (Skinput [6]), and we use a 
fairly exhaustive feature set to provide readers with a com-
plete palette for subsequent implementations. In detail, our 
feature space consists of: 

1. Acoustic power (84): The amplitudes of each transmit-
ting frequency and their surrounding bands (±1 kHz). 

2. Amplitude ratio between each transmitting frequency 
(6): Signal amplitude fluctuates when pressure applied, 
but the ratios between amplitudes were frequently stable.  

3. Average amplitude (4): The average of acoustic power 
from each transmitter frequency with ±1 kHz bandwidth. 
This will essentially eliminate temporal fluctuations. 

4. Average amplitude ratio between each transmitting fre-
quency (6): We also considered ratios between average 
amplitude described above as feature. 

5. Standard deviation (4): The different signal spectrum 
form (valley and peak) can be quantified in standard de-
viation between each transmitter frequency’s 21 bands. 

6. Linear average (10): We calculated linear average 
grouped for 32 bands (Figure 4, bottom). This has essen-
tially wider bandwidth and potentially useful for captur-
ing harmonic signals as well as outlier removal. We in-
cluded frequency range from 28.5 to 55.5 kHz 

7. Log average (5): We also included log average for 28 to 
72 kHz. This represents the broader band, as well as 
considering combined transmitting frequency amplitude 
and their surrounding bands as feature. 

8. Zero crossings (1): We included total amount of zero 
crossed value of raw signal stream. 

We adopted the Sequential Minimal Optimization (SMO) 
implementation of Support Vector Machine (SVM) within 
the WEKA [5] for our classification. This is a supervised 
machine learning technique that constructs a classification 
hyperplane in our high dimensional feature space. 

Results 
Classification results are shown in Figure 9. Classification 
sets 1 to 4 demonstrate useable accuracy readily applicable 
for real-time interaction systems. Classification sets 5 and 6 
pushed the limit for our sensing method to a usable 79.96% 
and 81.87% in average for all participants.  

Classification set 7 shows the robustness of our sensing 
method to segment gesture and no-gesture signal across all 
6 classification sets. The inclusion of the no-touch condition 
in position sets 1 to 6 reflects our system’s target scenarios, 
where differentiating touch from no-touch is as important as 
position classification. To get more insights on our system’s 
capability to classify on-body touch gestures, we also run 
our classification without including no-touch gesture (i.e. 
only classify the actual touch locations). Averaged across 
all 10 participants, we aggregated slightly lower accuracy 
(e.g. for set 1 at 93.81% (SD=10.1%), set 2 at 98.29% 
(SD=2.57%), set 3 at 84.20% (SD=10.72%), set 4 at 89.8% 
(SD=11.54%), and set 5 at 88.55% (SD=7.37%)). Overall 
accuracy decrease are insignificant, therefore show 
promising real-world applicability of our classifier. 

We also examine the effects of participant’s BMI on our 
classification results (compiled in Figure 10). Overall, there 

   
Figure 9. Classification accuracy for the designated 7 position sets. Labels show accuracy value, chance level, and standard devia-
tion. Error bars indicate standard deviations. Position sets 1-4 demonstrate immediate usable accuracy for interaction, while posi-
tion set 5 and 6 show the classifier’s scalability when increasing the number of positions. Position set 7 shows our system’s robust-
ness to segment gesture and no-gesture across all the previous 6 position sets. 



 

is no indication of accuracy degradation based on partici-
pant’s BMI, which is encouraging. 

In PUB [7] the accuracies for discrete touch sensing were 
84%, 66.6% and 65.7% for 5, 6 and 7 points, respectively. 
With our approach, we aggregate 98.75% (set 2 with 4 
points) and 81.87% (set 6 with 9 points). This clearly shows 
the advantage of our transdermal ultrasound approach com-
pared to previous work. Classification set 1, 3, 4, and 6 also 
showed the advantage of our sensing method, which enables 
touch sensing for positions surrounding the arm (no limita-
tion in sensing along a single axis on the forearm).  

To explore our feature space, we ranked features by the 
square of the weight assigned by the SVM. Among the con-
sistently best features we observed across all the classifica-
tion sets were standard deviations, transmitter frequency 
amplitudes, and their ratios. Note that standard deviations 
indicate strong correlation between measurement position 
and the dispersion of the received signal amplitudes. 

We repeated our classification test for the whole sets using 
highly ranked features only (standard deviations (4), trans-
mitter’s frequency amplitudes (4) and their ratios (6), aver-
age amplitude for 2 kHz bandwidth (4) and their ratios (6)); 
shrinking the total number of features to 24. The classifica-
tion results only decreased within an average of 0.63% 
while the classification time were noticeably faster (1.89 
times faster for training and 4.36 times faster for classifica-
tion). On average, we obtain 30 classified samples per se-
cond, which is sufficient for real-time recognition. 

Study 4: On-body Gesture Classification 
The ability to sense on-body touch gestures is also im-
portant in supporting eyes-free and subtle interaction mo-
dalities. In this study, we demonstrate the capability of our 

system to classify simple arm-grasping gestures as an ex-
ample of what our sensing method is able to support. 

Based on early trials, we found that applying significant 
pressure on the forearm exhibits significant fluctuations on 
the signals sensed by receivers that are collocated with 
transmitters in a single armband. Performing these gestures 
displace external and internal tissues, thus form different 
acoustic paths for our signal. 

To evaluate our system’s capability on sensing arm-
grasping gestures, we defined a gesture set consisted of five 
gestures: no touch, one, two, three, and four finger grasping 
(See Figure 1b for gesture illustration). 

Procedure 
The participants placed the armband of ultrasound transduc-
ers on their upper-forearm, and performed arm-grasping 
gestures on the forearm. The sensing configuration used 
was the combined one-armband transmitter and receiver 
(Figure 5). Participants were instructed to apply maximal 
pressure while maintaining comfortable feeling and avoid 
pain, when performing arm-grasping gestures. We inherit 
the procedures and techniques of our discrete touch position 
classification (Study 3). 

Results 
The average accuracy for 10 participants was 86.24% 
(SD=6.72%, chance=20%). The result seems promising 
considering that the classification was conducted with base-
line machine learning techniques with plenty of headroom 
for fine-tuning the parameters. 

INTERACTION DESIGN & ENVISIONED APPLICATIONS 
Based on the studies described in previous section, the fol-
lowing design implications are derived: 

1. Per-user training is most desirable. There are significant 
individual differences of how user performs touch ges-
tures. Fortunately, the training phase of our method only 
took considerably short time (±3 seconds per- gesture). 

2. Appropriate sensor configuration for specific interaction 
is crucial. We used different sensor configuration for 
study 1-3 and study 4. In our current setup, finger-
mounted receiver is required to robustly infer touch lo-
cations. However, as we discussed in study 4, different 
arm-grasping gestures exhibits significant variety in sig-
nal propagation profiles, therefore the requirement of 
finger-mounted receiver can be mitigated. Similar ap-
proach can be taken when designing interaction based on 
this sensing method on other body parts. 

3. Leverage the sensing capability to perform legato touch 
sensing. Participants have the tendency to locally shift 
their finger to adjust the final position. Our approach’s 
ability to continuously sense touch can help determining 
the time threshold for a touch event to be finalized. 

4. Sensing on fleshy and firm muscular volume body parts. 
Based on our study, those body parts gain better propa-
gation, good for higher power-to-sensing area ratio. 

 
Figure 10. Classification accuracy for the designated 7 posi-
tion sets divided between participants with BMI over and 
below 23. Note that there is no clear indication of accuracy 
degradation relative to participant’s BMI. Error bars show 
standard deviation. 



 

We addressed on-body sliding menu user input in Study 2 
(also presented in Figure 11). Furthermore, we envisioned 
two exemplary application domains in which our approach 
can be immediately useful: 1) supporting interaction modal-
ities for visually impaired users (who can accurately touch 
their own body parts using proprioception, as illustrated by 
Figure 1.1), and 2) for users with limited access to an input 
device (illustrated by Figure 1.2 and 1.3, e.g. when driving, 
biking, running, etc.). Other interactive application exam-
ples uniquely enabled by this technique includes: a) Wrist 
mounted mobile phone will embed the sensing unit and 
appropriates the forearm to be an input surface, b) Head-
phones that simultaneously plays music and transmits ultra-
sound signals through the skull, and s/he may touch differ-
ent parts of the head/neck/face to control the music, c) 
Multiple sensors placed in various body parts can be used to 
sense wide-body gestures. Exploring and developing these 
applications remains future work. 

DISCUSSION AND FUTURE WORK 
Our proposed approach has demonstrated that signal ampli-
tude on the receiver deteriorates according to the distance 
from the transmitter on certain body parts such as forearm, 
upper arm, and foot. However, during our sample collection 
we noticed random fluctuation in the signal reading when 
sliding the receiver on the skin. This produces potential 
error-prone samples, greatly reducing the robustness of our 
classification. To address this limitation, we suggest 
smoothing over longer windows, so as to negate the tempo-
ral spikes. Also, in the current design of our prototype, we 
do not measure phase changes or effects of Doppler shift in 
response to user interaction. These aspects remain future 
work. 

We intend to perform further studies on amplifying propa-
gation of the low-frequency ultrasound mechanical wave for 
skin-to-skin contact (specially for wearable pair sensing 
configuration), so that users can interact with their fingers 
rather than with the sensing ring. Exploring the application 
of this sensing method for capturing rhythmic pattern of 
user’s gestures as input method is also feasible [4]. 

CONCLUSION 
We have demonstrated the feasibility, discussed interaction 
design as well as present proof-of-concept applications of a 
novel on-body touch and gesture sensing approach by lev-
eraging low-frequency ultrasound wave propagation along 
the skin. This sensing method enables a breadth of viable 
applications using the human body as an input surface. We 
discussed the signal propagation across different body parts 
representing boney, fleshy, and firm-muscular tissues. By 
examining the variations of the signal propagation across 
different positions on the skin, we have shown that we can 
robustly classify a series of touch gestures performed at 
different locations on the forearm. We also demonstrated 
the feasibility of spatially continuous touch sensing along 
the skin, pressure-sensitive touch sensing, and arm-grasping 
gesture sensing. The sensor unit we used in our study con-
sists of off-the-shelf components which are inexpensive in 
both bill of materials and computing power. Furthermore, it 
can be replaced with smaller form factor, allowing the 
whole setup including the signal-processing unit to be em-
bedded into a mobile device.  

ACKNOWLEDGEMENTS 
We are thankful to anonymous reviewers for their thought-
ful comments and subjects who participated in the experi-
ments. 

REFERENCES 
1. Cui, J., Wei, Y., & Wang, H. The Study of Low-

frequency Ultrasound to Enhance Transdermal Drug De-
livery. Complex Medical Engineering, 2007, 1221–
1224. 

2. Cohn, G., Morris, D., Patel, S. N., & Tan, D. S. Human-
tenna: Using the Body as an Antenna for Real-Time 
Whole Body Interaction. CHI ‘12, 1901–10. 

3. Cohn, G., Morris, D., Patel, S. N., & Tan, D. S. Your 
Noise is My Command: Sensing Gestures Using the 
Body as an Antenna. CHI ‘11, 791–800. 

4. Ghomi, E., Faure, G., Huot, S., Chapuis, O., and 
Beaudouin-Lafon, M. Using Rhythmic Patterns as an 
Input Method. CHI ‘12, 1253–1262. 

5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. The Weka Data Mining 
Software: an Update. SIGKDD Explor. Newsl. 11, 1 
(Nov. 2009), 10–18.  

6. Harrison, C., Tan, D. S., & Morris, D. Skinput: Appro-
priating the Body as an Input Surface. CHI ‘10, 453–
462. 

7. Lin, S.-Y., Su, C.-H., Cheng, K.-Y., Liang, R.-H., Kuo, 
T.-H., and Chen, B.-Y. PUB - Point Upon Body: Explor-

 
Figure 11. We developed a proof of concept sliding menu 
application, which also served as our experiment platform in 
our interactive study (as a part of study 2). In this study, we 
investigated event mapping for continuous and pressure-
aware touch gestures. Note that in the future, the sensor unit 
(transmitter and receiver transducers) and the display con-
tents can be embedded into wearable devices enabling truly 
mobile experience. 



 

ing Eyes-Free Interaction and Methods on an Arm. UIST 
‘11, 481–488. 

8. Liang, R.-H., Lin, S.-Y., Su, C.-H., Cheng, K.-Y., Chen, 
B.-Y., and Yang, D.-N. 2011. SonarWatch: appropriat-
ing the forearm as a slider bar. In SIGGRAPH Asia 2011 
Emerging Technologies (SA ‘11). Article 5, 1 page. 

9. Lord Rayleigh. On Waves Propagated along the Plane 
Surface of an Elastic Solid. Proc. London Math. Soc. s1-
17 (1)(1885), 4–11. 

10. Mitragotri, S., Blankschtein, D., and Langer, R. Trans-
dermal Drug Delivery Using Low-frequency Sonopho-
resis. Pharmaceutical Research 13 (1996), 411–420. 

11. Mitragotri, S., Farrell, J., Tang, H., Terahara, T., Kost, 
J., and Langer, R. Determination of Threshold Energy 
Dose for Ultrasound-induced Transdermal Drug 
Transport. Controlled Release 63, 1-2 (2000), 41–52.  

12. Ogura, I., Kidikoro, T., Iinuma, K., Takehara, Y., 
Tanaka, K., and Matsuda, A. Measurement of Acoustic 
Impedance of Skin. Ultrasound in Medicine 4, RC 78.7, 
U4 A 5a (1978), 535. 

13. Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R., 
Turner, J., and Landay, J. A. Enabling Always-available 
Input with Muscle-Computer Interfaces. UIST ‘09, 167–
176.  

14. Sato, M., Poupyrev, I., Harrison, C. Touché: Enhancing 
Touch Interaction on Humans, Screens, Liquids, and 
Everyday Objects. CHI ‘12, 483–492. 

15. Non-Ionizing Radiation Section Bureau of Radiation and 
Medical Devices Department of National Health and 

Welfare. Guidelines for the safe use of ultrasound: Part 
II - Industrial and Commercial applications. Available 
online at: http://www.hc-sc.gc.ca/ewh-
semt/pubs/radiation/safety-code_24-
securite/index_e.html. Accessed at April 5th, 2013. 

16. Shung, K. K., Thieme, G. A., and Dunn, F. Ultrasonic 
Scattering in Biological Tissues. Journal of the Acousti-
cal Society of America 94 (1993), 3033.  

17. Suchkova, V., Siddiqi, F. N., Carstensen, E. L., Dalecki, 
D., Child, S., & Francis, C. W. Enhancement of Fibri-
nolysis with 40-khz Ultrasound. Circulation 98, 10, 
1030–1035. 

18. Takemura, K., Ito, A., Takamatsu, J., and Ogasawara, T. 
Active bone-conducted sound sensing for wearable in-
terfaces. UIST ‘11 Posters. 53–54. 

19. Terahara, T., Mitragotri, S., Kost, J., and Langer, R. 
Dependence of Low-frequency Sonophoresis on Ultra-
sound Parameters; Distance of the Horn and Intensity. 
International Journal of Pharmaceutics 235, 1-2 (2002), 
35–42. 

20. Wells, P. Physics of ultrasound. Ultrasonic Exposimetry. 
Ziskin, M. and Lewin, P., eds). 35. 

21. Zimmerman, T. G. Personal Area Networks: Near-Field 
Intrabody Communication. IBM Systems Journal 35, 
3.4, 609–617. 

22. Zimmerman, T. G., Smith, J. R., Paradiso, J. A., Allport, 
D., and Gershenfeld, N. Applying Electric Field Sensing 
to Human-Computer Interfaces. CHI ‘95, 280–287. 


